Page MenuHomec4science

pair_dpd_fdt_energy_kokkos.cpp
No OneTemporary

File Metadata

Created
Mon, Jun 24, 13:58

pair_dpd_fdt_energy_kokkos.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (Sandia)
------------------------------------------------------------------------- */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "atom_kokkos.h"
#include "atom_vec.h"
#include "comm.h"
#include "update.h"
#include "fix.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "random_mars.h"
#include "memory.h"
#include "modify.h"
#include "pair_dpd_fdt_energy_kokkos.h"
#include "error.h"
#include "atom_masks.h"
using namespace LAMMPS_NS;
#define EPSILON 1.0e-10
/* ---------------------------------------------------------------------- */
template<class DeviceType>
PairDPDfdtEnergyKokkos<DeviceType>::PairDPDfdtEnergyKokkos(LAMMPS *lmp) :
PairDPDfdtEnergy(lmp),rand_pool(seed + comm->me /** , lmp/**/)
{
atomKK = (AtomKokkos *) atom;
execution_space = ExecutionSpaceFromDevice<DeviceType>::space;
datamask_read = EMPTY_MASK;
datamask_modify = EMPTY_MASK;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
PairDPDfdtEnergyKokkos<DeviceType>::~PairDPDfdtEnergyKokkos()
{
if (copymode) return;
memory->destroy_kokkos(k_eatom,eatom);
memory->destroy_kokkos(k_vatom,vatom);
if (allocated) {
memory->destroy_kokkos(k_duCond,duCond);
memory->destroy_kokkos(k_duMech,duMech);
}
memory->destroy_kokkos(k_cutsq,cutsq);
/** rand_pool.destroy();/**/
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
template<class DeviceType>
void PairDPDfdtEnergyKokkos<DeviceType>::init_style()
{
PairDPDfdtEnergy::init_style();
// irequest = neigh request made by parent class
neighflag = lmp->kokkos->neighflag;
int irequest = neighbor->nrequest - 1;
neighbor->requests[irequest]->
kokkos_host = Kokkos::Impl::is_same<DeviceType,LMPHostType>::value &&
!Kokkos::Impl::is_same<DeviceType,LMPDeviceType>::value;
neighbor->requests[irequest]->
kokkos_device = Kokkos::Impl::is_same<DeviceType,LMPDeviceType>::value;
if (neighflag == FULL) {
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->half = 0;
} else if (neighflag == HALF || neighflag == HALFTHREAD) {
neighbor->requests[irequest]->full = 0;
neighbor->requests[irequest]->half = 1;
} else {
error->all(FLERR,"Cannot use chosen neighbor list style with reax/c/kk");
}
/** rand_pool.init(random,seed);/**/
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void PairDPDfdtEnergyKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
{
copymode = 1;
eflag = eflag_in;
vflag = vflag_in;
if (neighflag == FULL) no_virial_fdotr_compute = 1;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = vflag_fdotr = 0;
// reallocate per-atom arrays if necessary
if (eflag_atom) {
memory->destroy_kokkos(k_eatom,eatom);
memory->create_kokkos(k_eatom,eatom,maxeatom,"pair:eatom");
d_eatom = k_eatom.d_view;
}
if (vflag_atom) {
memory->destroy_kokkos(k_vatom,vatom);
memory->create_kokkos(k_vatom,vatom,maxvatom,6,"pair:vatom");
d_vatom = k_vatom.d_view;
}
x = atomKK->k_x.view<DeviceType>();
v = atomKK->k_v.view<DeviceType>();
f = atomKK->k_f.view<DeviceType>();
type = atomKK->k_type.view<DeviceType>();
mass = atomKK->k_mass.view<DeviceType>();
rmass = atomKK->rmass;
dpdTheta = atomKK->k_dpdTheta.view<DeviceType>();
k_cutsq.template sync<DeviceType>();
k_params.template sync<DeviceType>();
atomKK->sync(execution_space,X_MASK | F_MASK | TYPE_MASK | ENERGY_MASK | VIRIAL_MASK);
if (evflag) atomKK->modified(execution_space,F_MASK | ENERGY_MASK | VIRIAL_MASK);
else atomKK->modified(execution_space,F_MASK);
special_lj[0] = force->special_lj[0];
special_lj[1] = force->special_lj[1];
special_lj[2] = force->special_lj[2];
special_lj[3] = force->special_lj[3];
nlocal = atom->nlocal;
int nghost = atom->nghost;
int newton_pair = force->newton_pair;
dtinvsqrt = 1.0/sqrt(update->dt);
int inum = list->inum;
NeighListKokkos<DeviceType>* k_list = static_cast<NeighListKokkos<DeviceType>*>(list);
d_numneigh = k_list->d_numneigh;
d_neighbors = k_list->d_neighbors;
d_ilist = k_list->d_ilist;
boltz = force->boltz;
ftm2v = force->ftm2v;
int STACKPARAMS = 0; // optimize
// loop over neighbors of my atoms
EV_FLOAT ev;
if (splitFDT_flag) {
if (neighflag == HALF) {
if (newton_pair) {
if (evflag) Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeSplit<HALF,1,1> >(0,inum),*this,ev);
else Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeSplit<HALF,1,0> >(0,inum),*this);
} else {
if (evflag) Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeSplit<HALF,0,1> >(0,inum),*this,ev);
else Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeSplit<HALF,0,0> >(0,inum),*this);
}
} else if (neighflag == HALFTHREAD) {
if (newton_pair) {
if (evflag) Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeSplit<HALFTHREAD,1,1> >(0,inum),*this,ev);
else Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeSplit<HALFTHREAD,1,0> >(0,inum),*this);
} else {
if (evflag) Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeSplit<HALFTHREAD,0,1> >(0,inum),*this,ev);
else Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeSplit<HALFTHREAD,0,0> >(0,inum),*this);
}
}
} else {
// Allocate memory for duCond and duMech
if (allocated) {
memory->destroy_kokkos(k_duCond,duCond);
memory->destroy_kokkos(k_duMech,duMech);
}
memory->create_kokkos(k_duCond,duCond,nlocal+nghost,"pair:duCond");
memory->create_kokkos(k_duMech,duMech,nlocal+nghost,"pair:duMech");
d_duCond = k_duCond.view<DeviceType>();
d_duMech = k_duMech.view<DeviceType>();
h_duCond = k_duCond.h_view;
h_duMech = k_duMech.h_view;
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyZero>(0,nlocal+nghost),*this);
atomKK->sync(execution_space,V_MASK | DPDTHETA_MASK | RMASS_MASK);
atomKK->k_mass.sync<DeviceType>();
// loop over neighbors of my atoms
if (neighflag == HALF) {
if (newton_pair) {
if (evflag) Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeNoSplit<HALF,1,1> >(0,inum),*this,ev);
else Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeNoSplit<HALF,1,0> >(0,inum),*this);
} else {
if (evflag) Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeNoSplit<HALF,0,1> >(0,inum),*this,ev);
else Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeNoSplit<HALF,0,0> >(0,inum),*this);
}
} else if (neighflag == HALFTHREAD) {
if (newton_pair) {
if (evflag) Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeNoSplit<HALFTHREAD,1,1> >(0,inum),*this,ev);
else Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeNoSplit<HALFTHREAD,1,0> >(0,inum),*this);
} else {
if (evflag) Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeNoSplit<HALFTHREAD,0,1> >(0,inum),*this,ev);
else Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairDPDfdtEnergyComputeNoSplit<HALFTHREAD,0,0> >(0,inum),*this);
}
}
// Communicate the ghost delta energies to the locally owned atoms
// this memory transfer can be removed when fix_dpd_fdt_energy_kokkos is added
k_duCond.template modify<DeviceType>();
k_duCond.template sync<LMPHostType>();
k_duMech.template modify<DeviceType>();
k_duMech.template sync<LMPHostType>();
comm->reverse_comm_pair(this);
}
if (eflag_global) eng_vdwl += ev.evdwl;
if (vflag_global) {
virial[0] += ev.v[0];
virial[1] += ev.v[1];
virial[2] += ev.v[2];
virial[3] += ev.v[3];
virial[4] += ev.v[4];
virial[5] += ev.v[5];
}
if (vflag_fdotr) pair_virial_fdotr_compute(this);
if (eflag_atom) {
k_eatom.template modify<DeviceType>();
k_eatom.template sync<LMPHostType>();
}
if (vflag_atom) {
k_vatom.template modify<DeviceType>();
k_vatom.template sync<LMPHostType>();
}
copymode = 0;
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void PairDPDfdtEnergyKokkos<DeviceType>::operator()(TagPairDPDfdtEnergyZero, const int &ii) const {
d_duCond[ii] = 0.0;
d_duMech[ii] = 0.0;
}
template<class DeviceType>
template<int NEIGHFLAG, int NEWTON_PAIR, int EVFLAG>
KOKKOS_INLINE_FUNCTION
void PairDPDfdtEnergyKokkos<DeviceType>::operator()(TagPairDPDfdtEnergyComputeSplit<NEIGHFLAG,NEWTON_PAIR,EVFLAG>, const int &ii, EV_FLOAT& ev) const {
// The f array is atomic for Half/Thread neighbor style
Kokkos::View<F_FLOAT*[3], typename DAT::t_f_array::array_layout,DeviceType,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > a_f = f;
int i,j,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
double vxtmp,vytmp,vztmp,delvx,delvy,delvz;
double rsq,r,rinv,wd,wr,factor_dpd,uTmp;
double dot,randnum;
double kappa_ij, alpha_ij, theta_ij, gamma_ij;
double mass_i, mass_j;
double massinv_i, massinv_j;
double randPair, mu_ij;
i = d_ilist[ii];
xtmp = x(i,0);
ytmp = x(i,1);
ztmp = x(i,2);
itype = type[i];
jnum = d_numneigh[i];
double fx_i = 0.0;
double fy_i = 0.0;
double fz_i = 0.0;
for (jj = 0; jj < jnum; jj++) {
j = d_neighbors(i,jj);
factor_dpd = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x(j,0);
dely = ytmp - x(j,1);
delz = ztmp - x(j,2);
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
double cutsq_ij = STACKPARAMS?m_cutsq[itype][jtype]:d_cutsq(itype,jtype);
if (rsq < cutsq_ij) {
r = sqrt(rsq);
if (r < EPSILON) continue; // r can be 0.0 in DPD systems
rinv = 1.0/r;
double cut_ij = STACKPARAMS?m_params[itype][jtype].cut:params(itype,jtype).cut;
wr = 1.0 - r/cut_ij;
wd = wr*wr;
// conservative force = a0 * wr
double a0_ij = STACKPARAMS?m_params[itype][jtype].a0:params(itype,jtype).a0;
fpair = a0_ij*wr;
fpair *= factor_dpd*rinv;
fx_i += delx*fpair;
fy_i += dely*fpair;
fz_i += delz*fpair;
if (NEWTON_PAIR || j < nlocal) {
a_f(j,0) -= delx*fpair;
a_f(j,1) -= dely*fpair;
a_f(j,2) -= delz*fpair;
}
if (eflag) {
// unshifted eng of conservative term:
// evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/d_cut(itype,jtype));
// eng shifted to 0.0 at cutoff
evdwl = 0.5*a0_ij*cut_ij * wd;
evdwl *= factor_dpd;
if (EVFLAG)
ev.evdwl += ((NEWTON_PAIR||(j<nlocal))?1.0:0.5)*evdwl;
}
if (EVFLAG) this->template ev_tally<NEIGHFLAG,NEWTON_PAIR>(ev,i,j,evdwl,fpair,delx,dely,delz);
}
}
a_f(i,0) += fx_i;
a_f(i,1) += fy_i;
a_f(i,2) += fz_i;
}
template<class DeviceType>
template<int NEIGHFLAG, int NEWTON_PAIR, int EVFLAG>
KOKKOS_INLINE_FUNCTION
void PairDPDfdtEnergyKokkos<DeviceType>::operator()(TagPairDPDfdtEnergyComputeSplit<NEIGHFLAG,NEWTON_PAIR,EVFLAG>, const int &ii) const {
EV_FLOAT ev;
this->template operator()<NEIGHFLAG,NEWTON_PAIR,EVFLAG>(TagPairDPDfdtEnergyComputeSplit<NEIGHFLAG,NEWTON_PAIR,EVFLAG>(), ii, ev);
}
template<class DeviceType>
template<int NEIGHFLAG, int NEWTON_PAIR, int EVFLAG>
KOKKOS_INLINE_FUNCTION
void PairDPDfdtEnergyKokkos<DeviceType>::operator()(TagPairDPDfdtEnergyComputeNoSplit<NEIGHFLAG,NEWTON_PAIR,EVFLAG>, const int &ii, EV_FLOAT& ev) const {
// These array are atomic for Half/Thread neighbor style
Kokkos::View<F_FLOAT*[3], typename DAT::t_f_array::array_layout,DeviceType,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > a_f = f;
Kokkos::View<E_FLOAT*, typename DAT::t_efloat_1d::array_layout,DeviceType,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > a_duCond = d_duCond;
Kokkos::View<E_FLOAT*, typename DAT::t_efloat_1d::array_layout,DeviceType,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > a_duMech = d_duMech;
int i,j,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
double vxtmp,vytmp,vztmp,delvx,delvy,delvz;
double rsq,r,rinv,wd,wr,factor_dpd,uTmp;
double dot,randnum;
double kappa_ij, alpha_ij, theta_ij, gamma_ij;
double mass_i, mass_j;
double massinv_i, massinv_j;
double randPair, mu_ij;
rand_type rand_gen = rand_pool.get_state();
i = d_ilist[ii];
xtmp = x(i,0);
ytmp = x(i,1);
ztmp = x(i,2);
vxtmp = v(i,0);
vytmp = v(i,1);
vztmp = v(i,2);
itype = type[i];
jnum = d_numneigh[i];
double fx_i = 0.0;
double fy_i = 0.0;
double fz_i = 0.0;
for (jj = 0; jj < jnum; jj++) {
j = d_neighbors(i,jj);
factor_dpd = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x(j,0);
dely = ytmp - x(j,1);
delz = ztmp - x(j,2);
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
double cutsq_ij = STACKPARAMS?m_cutsq[itype][jtype]:d_cutsq(itype,jtype);
if (rsq < cutsq_ij) {
r = sqrt(rsq);
if (r < EPSILON) continue; // r can be 0.0 in DPD systems
rinv = 1.0/r;
double cut_ij = STACKPARAMS?m_params[itype][jtype].cut:params(itype,jtype).cut;
wr = 1.0 - r/cut_ij;
wd = wr*wr;
delvx = vxtmp - v(j,0);
delvy = vytmp - v(j,1);
delvz = vztmp - v(j,2);
dot = delx*delvx + dely*delvy + delz*delvz;
randnum = rand_gen.normal();
// Compute the current temperature
theta_ij = 0.5*(1.0/dpdTheta[i] + 1.0/dpdTheta[j]);
theta_ij = 1.0/theta_ij;
double sigma_ij = STACKPARAMS?m_params[itype][jtype].sigma:params(itype,jtype).sigma;
gamma_ij = sigma_ij*sigma_ij
/ (2.0*boltz*theta_ij);
// conservative force = a0 * wr
// drag force = -gamma * wr^2 * (delx dot delv) / r
// random force = sigma * wr * rnd * dtinvsqrt;
double a0_ij = STACKPARAMS?m_params[itype][jtype].a0:params(itype,jtype).a0;
fpair = a0_ij*wr;
fpair -= gamma_ij*wd*dot*rinv;
fpair += sigma_ij*wr*randnum*dtinvsqrt;
fpair *= factor_dpd*rinv;
fx_i += delx*fpair;
fy_i += dely*fpair;
fz_i += delz*fpair;
if (NEWTON_PAIR || j < nlocal) {
a_f(j,0) -= delx*fpair;
a_f(j,1) -= dely*fpair;
a_f(j,2) -= delz*fpair;
}
if (rmass) {
mass_i = rmass[i];
mass_j = rmass[j];
} else {
mass_i = mass[itype];
mass_j = mass[jtype];
}
massinv_i = 1.0 / mass_i;
massinv_j = 1.0 / mass_j;
// Compute the mechanical and conductive energy, uMech and uCond
mu_ij = massinv_i + massinv_j;
mu_ij *= ftm2v;
uTmp = gamma_ij*wd*rinv*rinv*dot*dot
- 0.5*sigma_ij*sigma_ij*mu_ij*wd;
uTmp -= sigma_ij*wr*rinv*dot*randnum*dtinvsqrt;
uTmp *= 0.5;
a_duMech[i] += uTmp;
if (NEWTON_PAIR || j < nlocal) {
a_duMech[j] += uTmp;
}
// Compute uCond
randnum = rand_gen.normal();
kappa_ij = STACKPARAMS?m_params[itype][jtype].kappa:params(itype,jtype).kappa;
alpha_ij = sqrt(2.0*boltz*kappa_ij);
randPair = alpha_ij*wr*randnum*dtinvsqrt;
uTmp = kappa_ij*(1.0/dpdTheta[i] - 1.0/dpdTheta[j])*wd;
uTmp += randPair;
a_duCond[i] += uTmp;
if (NEWTON_PAIR || j < nlocal) {
a_duCond[j] -= uTmp;
}
if (eflag) {
// unshifted eng of conservative term:
// evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/d_cut(itype,jtype));
// eng shifted to 0.0 at cutoff
evdwl = 0.5*a0_ij*cut_ij * wd;
evdwl *= factor_dpd;
if (EVFLAG)
ev.evdwl += ((NEWTON_PAIR||(j<nlocal))?1.0:0.5)*evdwl;
}
if (EVFLAG) this->template ev_tally<NEIGHFLAG,NEWTON_PAIR>(ev,i,j,evdwl,fpair,delx,dely,delz);
}
}
a_f(i,0) += fx_i;
a_f(i,1) += fy_i;
a_f(i,2) += fz_i;
rand_pool.free_state(rand_gen);
}
template<class DeviceType>
template<int NEIGHFLAG, int NEWTON_PAIR, int EVFLAG>
KOKKOS_INLINE_FUNCTION
void PairDPDfdtEnergyKokkos<DeviceType>::operator()(TagPairDPDfdtEnergyComputeNoSplit<NEIGHFLAG,NEWTON_PAIR,EVFLAG>, const int &ii) const {
EV_FLOAT ev;
this->template operator()<NEIGHFLAG,NEWTON_PAIR,EVFLAG>(TagPairDPDfdtEnergyComputeNoSplit<NEIGHFLAG,NEWTON_PAIR,EVFLAG>(), ii, ev);
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
template<class DeviceType>
void PairDPDfdtEnergyKokkos<DeviceType>::allocate()
{
PairDPDfdtEnergy::allocate();
int n = atom->ntypes;
int nlocal = atom->nlocal;
int nghost = atom->nghost;
memory->destroy(cutsq);
memory->create_kokkos(k_cutsq,cutsq,n+1,n+1,"pair:cutsq");
d_cutsq = k_cutsq.template view<DeviceType>();
k_params = Kokkos::DualView<params_dpd**,Kokkos::LayoutRight,DeviceType>("PairDPDfdtEnergy::params",n+1,n+1);
params = k_params.d_view;
if (!splitFDT_flag) {
memory->destroy(duCond);
memory->destroy(duMech);
memory->create_kokkos(k_duCond,duCond,nlocal+nghost+1,"pair:duCond");
memory->create_kokkos(k_duMech,duMech,nlocal+nghost+1,"pair:duMech");
d_duCond = k_duCond.view<DeviceType>();
d_duMech = k_duMech.view<DeviceType>();
h_duCond = k_duCond.h_view;
h_duMech = k_duMech.h_view;
}
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
template<class DeviceType>
double PairDPDfdtEnergyKokkos<DeviceType>::init_one(int i, int j)
{
double cutone = PairDPDfdtEnergy::init_one(i,j);
k_params.h_view(i,j).cut = cut[i][j];
k_params.h_view(i,j).a0 = a0[i][j];
k_params.h_view(i,j).sigma = sigma[i][j];
k_params.h_view(i,j).kappa = kappa[i][j];
k_params.h_view(j,i) = k_params.h_view(i,j);
if(i<MAX_TYPES_STACKPARAMS+1 && j<MAX_TYPES_STACKPARAMS+1) {
m_params[i][j] = m_params[j][i] = k_params.h_view(i,j);
m_cutsq[j][i] = m_cutsq[i][j] = cutone*cutone;
}
k_cutsq.h_view(i,j) = cutone*cutone;
k_cutsq.h_view(j,i) = k_cutsq.h_view(i,j);
k_cutsq.template modify<LMPHostType>();
k_params.template modify<LMPHostType>();
return cutone;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
template<int NEIGHFLAG, int NEWTON_PAIR>
KOKKOS_INLINE_FUNCTION
void PairDPDfdtEnergyKokkos<DeviceType>::ev_tally(EV_FLOAT &ev, const int &i, const int &j,
const F_FLOAT &epair, const F_FLOAT &fpair, const F_FLOAT &delx,
const F_FLOAT &dely, const F_FLOAT &delz) const
{
const int EFLAG = eflag;
const int VFLAG = vflag_either;
// The eatom and vatom arrays are atomic for Half/Thread neighbor style
Kokkos::View<E_FLOAT*, typename DAT::t_efloat_1d::array_layout,DeviceType,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > v_eatom = k_eatom.view<DeviceType>();
Kokkos::View<F_FLOAT*[6], typename DAT::t_virial_array::array_layout,DeviceType,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > v_vatom = k_vatom.view<DeviceType>();
if (EFLAG) {
if (eflag_atom) {
const E_FLOAT epairhalf = 0.5 * epair;
if (NEIGHFLAG!=FULL) {
if (NEWTON_PAIR || i < nlocal) v_eatom[i] += epairhalf;
if (NEWTON_PAIR || j < nlocal) v_eatom[j] += epairhalf;
} else {
v_eatom[i] += epairhalf;
}
}
}
if (VFLAG) {
const E_FLOAT v0 = delx*delx*fpair;
const E_FLOAT v1 = dely*dely*fpair;
const E_FLOAT v2 = delz*delz*fpair;
const E_FLOAT v3 = delx*dely*fpair;
const E_FLOAT v4 = delx*delz*fpair;
const E_FLOAT v5 = dely*delz*fpair;
if (vflag_global) {
if (NEIGHFLAG!=FULL) {
if (NEWTON_PAIR || i < nlocal) {
ev.v[0] += 0.5*v0;
ev.v[1] += 0.5*v1;
ev.v[2] += 0.5*v2;
ev.v[3] += 0.5*v3;
ev.v[4] += 0.5*v4;
ev.v[5] += 0.5*v5;
}
if (NEWTON_PAIR || j < nlocal) {
ev.v[0] += 0.5*v0;
ev.v[1] += 0.5*v1;
ev.v[2] += 0.5*v2;
ev.v[3] += 0.5*v3;
ev.v[4] += 0.5*v4;
ev.v[5] += 0.5*v5;
}
} else {
ev.v[0] += 0.5*v0;
ev.v[1] += 0.5*v1;
ev.v[2] += 0.5*v2;
ev.v[3] += 0.5*v3;
ev.v[4] += 0.5*v4;
ev.v[5] += 0.5*v5;
}
}
if (vflag_atom) {
if (NEIGHFLAG!=FULL) {
if (NEWTON_PAIR || i < nlocal) {
v_vatom(i,0) += 0.5*v0;
v_vatom(i,1) += 0.5*v1;
v_vatom(i,2) += 0.5*v2;
v_vatom(i,3) += 0.5*v3;
v_vatom(i,4) += 0.5*v4;
v_vatom(i,5) += 0.5*v5;
}
if (NEWTON_PAIR || j < nlocal) {
v_vatom(j,0) += 0.5*v0;
v_vatom(j,1) += 0.5*v1;
v_vatom(j,2) += 0.5*v2;
v_vatom(j,3) += 0.5*v3;
v_vatom(j,4) += 0.5*v4;
v_vatom(j,5) += 0.5*v5;
}
} else {
v_vatom(i,0) += 0.5*v0;
v_vatom(i,1) += 0.5*v1;
v_vatom(i,2) += 0.5*v2;
v_vatom(i,3) += 0.5*v3;
v_vatom(i,4) += 0.5*v4;
v_vatom(i,5) += 0.5*v5;
}
}
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
int PairDPDfdtEnergyKokkos<DeviceType>::sbmask(const int& j) const {
return j >> SBBITS & 3;
}
namespace LAMMPS_NS {
template class PairDPDfdtEnergyKokkos<LMPDeviceType>;
#ifdef KOKKOS_HAVE_CUDA
template class PairDPDfdtEnergyKokkos<LMPHostType>;
#endif
}

Event Timeline