Page MenuHomec4science

msm.cpp
No OneTemporary

File Metadata

Created
Wed, Jun 19, 20:15
This document is not UTF8. It was detected as ISO-8859-1 (Latin 1) and converted to UTF8 for display.
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Paul Crozier, Stan Moore, Stephen Bond, (all SNL)
------------------------------------------------------------------------- */
#include "lmptype.h"
#include "mpi.h"
#include "string.h"
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "msm.h"
#include "atom.h"
#include "comm.h"
#include "commgrid.h"
#include "neighbor.h"
#include "force.h"
#include "pair.h"
#include "domain.h"
#include "memory.h"
#include "error.h"
#include "math_const.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define MAX_LEVELS 10
#define OFFSET 16384
#define SMALL 0.00001
enum{REVERSE_RHO,REVERSE_AD,REVERSE_AD_PERATOM};
enum{FORWARD_RHO,FORWARD_AD,FORWARD_AD_PERATOM};
/* ---------------------------------------------------------------------- */
MSM::MSM(LAMMPS *lmp, int narg, char **arg) : KSpace(lmp, narg, arg)
{
if (narg < 1) error->all(FLERR,"Illegal kspace_style msm command");
msmflag = 1;
accuracy_relative = atof(arg[0]);
nfactors = 1;
factors = new int[nfactors];
factors[0] = 2;
MPI_Comm_rank(world,&me);
procneigh_levels = NULL;
world_levels = NULL;
active_flag = NULL;
phi1d = dphi1d = NULL;
nmax = 0;
part2grid = NULL;
g_direct = NULL;
g_direct_top = NULL;
v0_direct = v1_direct = v2_direct = NULL;
v3_direct = v4_direct = v5_direct = NULL;
v0_direct_top = v1_direct_top = v2_direct_top = NULL;
v3_direct_top = v4_direct_top = v5_direct_top = NULL;
cg_all = cg_peratom_all = NULL;
cg = cg_peratom = NULL;
levels = 0;
peratom_allocate_flag = 0;
order = 8;
}
/* ----------------------------------------------------------------------
free all memory
------------------------------------------------------------------------- */
MSM::~MSM()
{
delete [] factors;
deallocate();
deallocate_peratom();
memory->destroy(part2grid);
memory->destroy(g_direct);
memory->destroy(g_direct_top);
memory->destroy(v0_direct);
memory->destroy(v1_direct);
memory->destroy(v2_direct);
memory->destroy(v3_direct);
memory->destroy(v4_direct);
memory->destroy(v5_direct);
memory->destroy(v0_direct_top);
memory->destroy(v1_direct_top);
memory->destroy(v2_direct_top);
memory->destroy(v3_direct_top);
memory->destroy(v4_direct_top);
memory->destroy(v5_direct_top);
deallocate_levels();
}
/* ----------------------------------------------------------------------
called once before run
------------------------------------------------------------------------- */
void MSM::init()
{
if (me == 0) {
if (screen) fprintf(screen,"MSM initialization ...\n");
if (logfile) fprintf(logfile,"MSM initialization ...\n");
}
// error check
triclinic_check();
if (domain->dimension == 2)
error->all(FLERR,"Cannot (yet) use MSM with 2d simulation");
if (!atom->q_flag) error->all(FLERR,"Kspace style requires atom attribute q");
if (slabflag == 1) error->all(FLERR,"Slab correction not needed for MSM");
if (order < 4 || order > 10) {
char str[128];
sprintf(str,"MSM order must be 4, 6, 8, or 10");
error->all(FLERR,str);
}
if (order%2 != 0) error->all(FLERR,"MSM order must be 4, 6, 8, or 10");
if (sizeof(FFT_SCALAR) != 8)
error->all(FLERR,"Cannot (yet) use single precision with MSM "
"(remove -DFFT_SINGLE from Makefile and recompile)");
pair_check();
// extract short-range Coulombic cutoff from pair style
int itmp;
double *p_cutoff = (double *) force->pair->extract("cut_coul",itmp);
if (p_cutoff == NULL)
error->all(FLERR,"KSpace style is incompatible with Pair style");
cutoff = *p_cutoff;
// compute qsum & qsqsum and give error if not charge-neutral
qsum = qsqsum = 0.0;
for (int i = 0; i < atom->nlocal; i++) {
qsum += atom->q[i];
qsqsum += atom->q[i]*atom->q[i];
}
qqrd2e = force->qqrd2e;
scale = 1.0;
double tmp;
MPI_Allreduce(&qsum,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
qsum = tmp;
MPI_Allreduce(&qsqsum,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
qsqsum = tmp;
q2 = qsqsum * force->qqrd2e / force->dielectric;
if (qsqsum == 0.0)
error->all(FLERR,"Cannot use kspace solver on system with no charge");
// not yet sure of the correction needed for non-neutral systems
if (fabs(qsum) > SMALL) {
char str[128];
sprintf(str,"System is not charge neutral, net charge = %g",qsum);
error->all(FLERR,str);
}
triclinic = domain->triclinic;
// set accuracy (force units) from accuracy_relative or accuracy_absolute
if (accuracy_absolute >= 0.0) accuracy = accuracy_absolute;
else accuracy = accuracy_relative * two_charge_force;
// setup MSM grid resolution
set_grid_global();
setup();
double estimated_error = estimate_total_error();
// output grid stats
int ngrid_max;
MPI_Allreduce(&ngrid[0],&ngrid_max,1,MPI_INT,MPI_MAX,world);
if (me == 0) {
if (screen) {
fprintf(screen," 3d grid size/proc = %d\n",
ngrid_max);
fprintf(screen," estimated absolute RMS force accuracy = %g\n",
estimated_error);
fprintf(screen," estimated relative force accuracy = %g\n",
estimated_error/two_charge_force);
}
if (logfile) {
fprintf(logfile," 3d grid size/proc = %d\n",
ngrid_max);
fprintf(logfile," estimated absolute RMS force accuracy = %g\n",
estimated_error);
fprintf(logfile," estimated relative force accuracy = %g\n",
estimated_error/two_charge_force);
}
}
if (me == 0) {
if (screen) {
fprintf(screen," grid = %d %d %d\n",nx_msm[0],ny_msm[0],nz_msm[0]);
fprintf(screen," order = %d\n",order);
}
if (logfile) {
fprintf(logfile," grid = %d %d %d\n",nx_msm[0],ny_msm[0],nz_msm[0]);
fprintf(logfile," order = %d\n",order);
}
}
}
/* ----------------------------------------------------------------------
estimate cutoff for a given grid spacing and error
------------------------------------------------------------------------- */
double MSM::estimate_cutoff(double h, double prd)
{
double a;
int p = order - 1;
double Mp,cprime,error_scaling;
Mp = cprime = error_scaling = 1;
// Mp values from Table 5.1 of Hardy's thesis
// cprime values from equation 4.17 of Hardy's thesis
// error scaling from empirical fitting to convert to rms force errors
if (p == 3) {
Mp = 9;
cprime = 1.0/6.0;
error_scaling = 0.39189561;
} else if (p == 5) {
Mp = 825;
cprime = 1.0/30.0;
error_scaling = 0.150829428;
} else if (p == 7) {
Mp = 130095;
cprime = 1.0/140.0;
error_scaling = 0.049632967;
} else if (p == 9) {
Mp = 34096545;
cprime = 1.0/630.0;
error_scaling = 0.013520855;
} else {
error->all(FLERR,"MSM order must be 4, 6, 8, or 10");
}
// equation 4.1 from Hardy's thesis
double C_p = 4.0*cprime*Mp/3.0;
// use empirical parameters to convert to rms force errors
C_p *= error_scaling;
// equation 3.200 from Hardy's thesis
a = C_p*pow(h,(p-1))/accuracy;
// include dependency of error on other terms
a *= q2/(prd*sqrt(atom->natoms));
a = pow(a,1.0/double(p));
return a;
}
/* ----------------------------------------------------------------------
estimate 1d grid RMS force error for MSM
------------------------------------------------------------------------- */
double MSM::estimate_1d_error(double h, double prd)
{
double a = cutoff;
int p = order - 1;
double Mp,cprime,error_scaling;
Mp = cprime = error_scaling = 1;
// Mp values from Table 5.1 of Hardy's thesis
// cprime values from equation 4.17 of Hardy's thesis
// error scaling from empirical fitting to convert to rms force errors
if (p == 3) {
Mp = 9;
cprime = 1.0/6.0;
error_scaling = 0.39189561;
} else if (p == 5) {
Mp = 825;
cprime = 1.0/30.0;
error_scaling = 0.150829428;
} else if (p == 7) {
Mp = 130095;
cprime = 1.0/140.0;
error_scaling = 0.049632967;
} else if (p == 9) {
Mp = 34096545;
cprime = 1.0/630.0;
error_scaling = 0.013520855;
} else {
error->all(FLERR,"MSM order must be 4, 6, 8, or 10");
}
// equation 4.1 from Hardy's thesis
double C_p = 4.0*cprime*Mp/3.0;
// use empirical parameters to convert to rms force errors
C_p *= error_scaling;
// equation 3.197 from Hardy's thesis
double error_1d = C_p*pow(h,(p-1))/pow(a,(p+1));
// include dependency of error on other terms
error_1d *= q2*a/(prd*sqrt(atom->natoms));
return error_1d;
}
/* ----------------------------------------------------------------------
estimate 3d grid RMS force error
------------------------------------------------------------------------- */
double MSM::estimate_3d_error()
{
double xprd = domain->xprd;
double yprd = domain->yprd;
double zprd = domain->zprd;
double error_x = estimate_1d_error(h_x,xprd);
double error_y = estimate_1d_error(h_y,yprd);
double error_z = estimate_1d_error(h_z,zprd);
double error_3d =
sqrt(error_x*error_x + error_y*error_y + error_z*error_z) / sqrt(3.0);
return error_3d;
}
/* ----------------------------------------------------------------------
estimate total RMS force error
------------------------------------------------------------------------- */
double MSM::estimate_total_error()
{
double xprd = domain->xprd;
double yprd = domain->yprd;
double zprd = domain->zprd;
bigint natoms = atom->natoms;
double grid_error = estimate_3d_error();
double q2_over_sqrt = q2 / sqrt(natoms*cutoff*xprd*yprd*zprd);
double short_range_error = 0.0;
double table_error =
estimate_table_accuracy(q2_over_sqrt,short_range_error);
double estimated_total_error = sqrt(grid_error*grid_error +
short_range_error*short_range_error + table_error*table_error);
return estimated_total_error;
}
/* ----------------------------------------------------------------------
adjust MSM coeffs, called initially and whenever volume has changed
------------------------------------------------------------------------- */
void MSM::setup()
{
double *prd;
double a = cutoff;
// volume-dependent factors
prd = domain->prd;
double xprd = prd[0];
double yprd = prd[1];
double zprd = prd[2];
volume = xprd * yprd * zprd;
// loop over grid levels and compute grid spacing
for (int n=0; n<levels; n++) {
if (triclinic == 0) {
delxinv[n] = nx_msm[n]/xprd;
delyinv[n] = ny_msm[n]/yprd;
delzinv[n] = nz_msm[n]/zprd;
} else { // use lamda (0-1) coordinates
delxinv[n] = nx_msm[n];
delyinv[n] = ny_msm[n];
delzinv[n] = nz_msm[n];
}
}
double ax = a;
double ay = a;
double az = a;
// transform the interaction sphere in box coords to an ellipsoid in lamda (0-1) coords to
// get the direct sum interaction limits for a triclinic system
if (triclinic) {
double tmp[3];
kspacebbox(a,&tmp[0]);
ax = tmp[0];
ay = tmp[1];
az = tmp[2];
}
// direct sum interaction limits
nxhi_direct = static_cast<int> (2.0*ax*delxinv[0]);
nxlo_direct = -nxhi_direct;
nyhi_direct = static_cast<int> (2.0*ay*delyinv[0]);
nylo_direct = -nyhi_direct;
nzhi_direct = static_cast<int> (2.0*az*delzinv[0]);
nzlo_direct = -nzhi_direct;
nmax_direct = 8*(nxhi_direct+1)*(nyhi_direct+1)*(nzhi_direct+1);
deallocate();
if (peratom_allocate_flag) deallocate_peratom();
// compute direct sum interaction weights
if (!peratom_allocate_flag) { // Timestep 0
get_g_direct();
get_virial_direct();
if (domain->nonperiodic) {
get_g_direct_top(levels-1);
get_virial_direct_top(levels-1);
}
} else {
get_g_direct();
if (domain->nonperiodic) get_g_direct_top(levels-1);
if (vflag_either) {
get_virial_direct();
if (domain->nonperiodic) get_virial_direct_top(levels-1);
}
}
if (!triclinic)
boxlo = domain->boxlo;
else
boxlo = domain->boxlo_lamda;
// ghost grid points depend on direct sum interaction limits, so need to recompute local grid
set_grid_local();
// allocate K-space dependent memory
// don't invoke allocate_peratom(), compute() will allocate when needed
allocate();
peratom_allocate_flag = 0;
// setup commgrid
cg_all->ghost_notify();
cg_all->setup();
for (int n=0; n<levels; n++) {
if (!active_flag[n]) continue;
cg[n]->ghost_notify();
cg[n]->setup();
}
}
/* ----------------------------------------------------------------------
compute the MSM long-range force, energy, virial
------------------------------------------------------------------------- */
void MSM::compute(int eflag, int vflag)
{
int i,j;
// set energy/virial flags
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = evflag_atom = eflag_global = vflag_global =
eflag_atom = vflag_atom = eflag_either = vflag_either = 0;
// invoke allocate_peratom() if needed for first time
if (vflag_atom && !peratom_allocate_flag) {
allocate_peratom();
cg_peratom_all->ghost_notify();
cg_peratom_all->setup();
for (int n=0; n<levels; n++) {
if (!active_flag[n]) continue;
cg_peratom[n]->ghost_notify();
cg_peratom[n]->setup();
}
peratom_allocate_flag = 1;
}
// convert atoms from box to lamda coords
if (triclinic)
domain->x2lamda(atom->nlocal);
// extend size of per-atom arrays if necessary
if (atom->nlocal > nmax) {
memory->destroy(part2grid);
nmax = atom->nmax;
memory->create(part2grid,nmax,3,"msm:part2grid");
}
// find grid points for all my particles
// map my particle charge onto my local 3d density grid (aninterpolation)
particle_map();
make_rho();
// all procs reverse communicate charge density values from their ghost grid points
// to fully sum contribution in their 3d grid
current_level = 0;
cg_all->reverse_comm(this,REVERSE_RHO);
// forward communicate charge density values to fill ghost grid points
// compute direct sum interaction and then restrict to coarser grid
for (int n=0; n<=levels-2; n++) {
if (!active_flag[n]) continue;
current_level = n;
cg[n]->forward_comm(this,FORWARD_RHO);
direct(n);
restriction(n);
}
// compute direct interation for top grid level for nonperiodic
// and for second from top grid level for periodic
if (active_flag[levels-1]) {
if (domain->nonperiodic) {
current_level = levels-1;
cg[levels-1]->forward_comm(this,FORWARD_RHO);
direct_top(levels-1);
cg[levels-1]->reverse_comm(this,REVERSE_AD);
if (vflag_atom)
cg_peratom[levels-1]->reverse_comm(this,REVERSE_AD_PERATOM);
} else {
// Here using MPI_Allreduce is cheaper than using commgrid
grid_swap_forward(levels-1,qgrid[levels-1]);
direct(levels-1);
grid_swap_reverse(levels-1,egrid[levels-1]);
current_level = levels-1;
if (vflag_atom)
cg_peratom[levels-1]->reverse_comm(this,REVERSE_AD_PERATOM);
}
}
// prolongate energy/virial from coarser grid to finer grid
// reverse communicate from ghost grid points to get full sum
for (int n=levels-2; n>=0; n--) {
if (!active_flag[n]) continue;
prolongation(n);
current_level = n;
cg[n]->reverse_comm(this,REVERSE_AD);
// extra per-atom virial communication
if (vflag_atom)
cg_peratom[n]->reverse_comm(this,REVERSE_AD_PERATOM);
}
// all procs communicate E-field values
// to fill ghost cells surrounding their 3d bricks
current_level = 0;
cg_all->forward_comm(this,FORWARD_AD);
// extra per-atom energy/virial communication
if (vflag_atom)
cg_peratom_all->forward_comm(this,FORWARD_AD_PERATOM);
// calculate the force on my particles (interpolation)
fieldforce();
// calculate the per-atom energy/virial for my particles
if (evflag_atom) fieldforce_peratom();
// total long-range energy
const double qscale = force->qqrd2e * scale;
if (eflag_global) {
double energy_all;
MPI_Allreduce(&energy,&energy_all,1,MPI_DOUBLE,MPI_SUM,world);
energy = energy_all;
double e_self = qsqsum*gamma(0.0)/cutoff; // Self-energy term
energy -= e_self;
energy *= 0.5*qscale;
}
// total long-range virial
if (vflag_global) {
double virial_all[6];
MPI_Allreduce(virial,virial_all,6,MPI_DOUBLE,MPI_SUM,world);
for (i = 0; i < 6; i++) virial[i] = 0.5*qscale*virial_all[i];
}
// per-atom energy/virial
// energy includes self-energy correction
if (evflag_atom) {
double *q = atom->q;
int nlocal = atom->nlocal;
if (eflag_atom) {
for (i = 0; i < nlocal; i++) {
eatom[i] -= q[i]*q[i]*gamma(0.0)/cutoff;
eatom[i] *= 0.5*qscale;
}
}
if (vflag_atom) {
for (i = 0; i < nlocal; i++)
for (j = 0; j < 6; j++) vatom[i][j] *= 0.5*qscale;
}
}
// convert atoms back from lamda to box coords
if (triclinic)
domain->lamda2x(atom->nlocal);
}
/* ----------------------------------------------------------------------
allocate memory that depends on # of grid points
------------------------------------------------------------------------- */
void MSM::allocate()
{
// interpolation coeffs
memory->create2d_offset(phi1d,3,-order,order,"msm:phi1d");
memory->create2d_offset(dphi1d,3,-order,order,"msm:dphi1d");
// commgrid using all processors for finest grid level
int (*procneigh_all)[2] = comm->procneigh;
cg_all = new CommGrid(lmp,world,1,1,
nxlo_in[0],nxhi_in[0],nylo_in[0],nyhi_in[0],nzlo_in[0],nzhi_in[0],
nxlo_out_all,nxhi_out_all,nylo_out_all,nyhi_out_all,nzlo_out_all,nzhi_out_all,
nxlo_out[0],nxhi_out[0],nylo_out[0],nyhi_out[0],nzlo_out[0],nzhi_out[0],
procneigh_all[0][0],procneigh_all[0][1],procneigh_all[1][0],
procneigh_all[1][1],procneigh_all[2][0],procneigh_all[2][1]);
// allocate memory for each grid level
for (int n=0; n<levels; n++) {
memory->create3d_offset(qgrid[n],nzlo_out[n],nzhi_out[n],
nylo_out[n],nyhi_out[n],nxlo_out[n],nxhi_out[n],"msm:qgrid");
memory->create3d_offset(egrid[n],nzlo_out[n],nzhi_out[n],
nylo_out[n],nyhi_out[n],nxlo_out[n],nxhi_out[n],"msm:egrid");
// create commgrid object for rho and electric field communication
if (active_flag[n]) {
int **procneigh = procneigh_levels[n];
cg[n] = new CommGrid(lmp,world_levels[n],1,1,
nxlo_in[n],nxhi_in[n],nylo_in[n],nyhi_in[n],nzlo_in[n],nzhi_in[n],
nxlo_out[n],nxhi_out[n],nylo_out[n],nyhi_out[n],nzlo_out[n],nzhi_out[n],
procneigh[0][0],procneigh[0][1],procneigh[1][0],
procneigh[1][1],procneigh[2][0],procneigh[2][1]);
}
}
}
/* ----------------------------------------------------------------------
allocate per-atom virial memory that depends on # of grid points
------------------------------------------------------------------------- */
void MSM::allocate_peratom()
{
// create commgrid object for per-atom virial using all processors
int (*procneigh_all)[2] = comm->procneigh;
cg_peratom_all =
new CommGrid(lmp,world,6,6,
nxlo_in[0],nxhi_in[0],nylo_in[0],nyhi_in[0],nzlo_in[0],nzhi_in[0],
nxlo_out_all,nxhi_out_all,nylo_out_all,nyhi_out_all,nzlo_out_all,nzhi_out_all,
nxlo_out[0],nxhi_out[0],nylo_out[0],nyhi_out[0],nzlo_out[0],nzhi_out[0],
procneigh_all[0][0],procneigh_all[0][1],procneigh_all[1][0],
procneigh_all[1][1],procneigh_all[2][0],procneigh_all[2][1]);
// allocate memory for each grid level
for (int n=0; n<levels; n++) {
memory->create3d_offset(v0grid[n],nzlo_out[n],nzhi_out[n],
nylo_out[n],nyhi_out[n],nxlo_out[n],nxhi_out[n],"msm:v0grid");
memory->create3d_offset(v1grid[n],nzlo_out[n],nzhi_out[n],
nylo_out[n],nyhi_out[n],nxlo_out[n],nxhi_out[n],"msm:v1grid");
memory->create3d_offset(v2grid[n],nzlo_out[n],nzhi_out[n],
nylo_out[n],nyhi_out[n],nxlo_out[n],nxhi_out[n],"msm:v2grid");
memory->create3d_offset(v3grid[n],nzlo_out[n],nzhi_out[n],
nylo_out[n],nyhi_out[n],nxlo_out[n],nxhi_out[n],"msm:v3grid");
memory->create3d_offset(v4grid[n],nzlo_out[n],nzhi_out[n],
nylo_out[n],nyhi_out[n],nxlo_out[n],nxhi_out[n],"msm:v4grid");
memory->create3d_offset(v5grid[n],nzlo_out[n],nzhi_out[n],
nylo_out[n],nyhi_out[n],nxlo_out[n],nxhi_out[n],"msm:v5grid");
// create commgrid object for per-atom virial
if (active_flag[n]) {
int **procneigh = procneigh_levels[n];
cg_peratom[n] =
new CommGrid(lmp,world_levels[n],6,6,
nxlo_in[n],nxhi_in[n],nylo_in[n],nyhi_in[n],nzlo_in[n],nzhi_in[n],
nxlo_out[n],nxhi_out[n],nylo_out[n],nyhi_out[n],nzlo_out[n],nzhi_out[n],
procneigh[0][0],procneigh[0][1],procneigh[1][0],
procneigh[1][1],procneigh[2][0],procneigh[2][1]);
}
}
}
/* ----------------------------------------------------------------------
deallocate memory that depends on # of grid points
------------------------------------------------------------------------- */
void MSM::deallocate()
{
memory->destroy2d_offset(phi1d,-order);
memory->destroy2d_offset(dphi1d,-order);
if (cg_all) delete cg_all;
for (int n=0; n<levels; n++) {
if (qgrid[n])
memory->destroy3d_offset(qgrid[n],nzlo_out[n],nylo_out[n],nxlo_out[n]);
if (egrid[n])
memory->destroy3d_offset(egrid[n],nzlo_out[n],nylo_out[n],nxlo_out[n]);
if (world_levels)
if (world_levels[n] != MPI_COMM_NULL)
MPI_Comm_free(&world_levels[n]);
if (cg)
if (cg[n]) delete cg[n];
}
}
/* ----------------------------------------------------------------------
deallocate per-atom virial memory that depends on # of grid points
------------------------------------------------------------------------- */
void MSM::deallocate_peratom()
{
if (cg_peratom_all) delete cg_peratom_all;
for (int n=0; n<levels; n++) {
if (v0grid[n])
memory->destroy3d_offset(v0grid[n],nzlo_out[n],nylo_out[n],nxlo_out[n]);
if (v1grid[n])
memory->destroy3d_offset(v1grid[n],nzlo_out[n],nylo_out[n],nxlo_out[n]);
if (v2grid[n])
memory->destroy3d_offset(v2grid[n],nzlo_out[n],nylo_out[n],nxlo_out[n]);
if (v3grid[n])
memory->destroy3d_offset(v3grid[n],nzlo_out[n],nylo_out[n],nxlo_out[n]);
if (v4grid[n])
memory->destroy3d_offset(v4grid[n],nzlo_out[n],nylo_out[n],nxlo_out[n]);
if (v5grid[n])
memory->destroy3d_offset(v5grid[n],nzlo_out[n],nylo_out[n],nxlo_out[n]);
if (cg_peratom)
if (cg_peratom[n]) delete cg_peratom[n];
}
}
/* ----------------------------------------------------------------------
allocate memory that depends on # of grid levels
------------------------------------------------------------------------- */
void MSM::allocate_levels()
{
ngrid = new int[levels];
cg = new CommGrid*[levels];
cg_peratom = new CommGrid*[levels];
memory->create(procneigh_levels,levels,3,2,"msm:procneigh_levels");
world_levels = new MPI_Comm[levels];
active_flag = new int[levels];
alpha = new int[levels];
betax = new int[levels];
betay = new int[levels];
betaz = new int[levels];
nx_msm = new int[levels];
ny_msm = new int[levels];
nz_msm = new int[levels];
nxlo_in = new int[levels];
nylo_in = new int[levels];
nzlo_in = new int[levels];
nxhi_in = new int[levels];
nyhi_in = new int[levels];
nzhi_in = new int[levels];
nxlo_out = new int[levels];
nylo_out = new int[levels];
nzlo_out = new int[levels];
nxhi_out = new int[levels];
nyhi_out = new int[levels];
nzhi_out = new int[levels];
delxinv = new double[levels];
delyinv = new double[levels];
delzinv = new double[levels];
qgrid = new double***[levels];
egrid = new double***[levels];
v0grid = new double***[levels];
v1grid = new double***[levels];
v2grid = new double***[levels];
v3grid = new double***[levels];
v4grid = new double***[levels];
v5grid = new double***[levels];
for (int n=0; n<levels; n++) {
cg[n] = NULL;
world_levels[n] = MPI_COMM_NULL;
cg_peratom[n] = NULL;
qgrid[n] = NULL;
egrid[n] = NULL;
v0grid[n] = NULL;
v1grid[n] = NULL;
v2grid[n] = NULL;
v3grid[n] = NULL;
v4grid[n] = NULL;
v5grid[n] = NULL;
}
}
/* ----------------------------------------------------------------------
deallocate memory that depends on # of grid levels
------------------------------------------------------------------------- */
void MSM::deallocate_levels()
{
delete [] ngrid;
memory->destroy(procneigh_levels);
delete [] world_levels;
delete [] active_flag;
delete [] cg;
delete [] cg_peratom;
delete [] alpha;
delete [] betax;
delete [] betay;
delete [] betaz;
delete [] nx_msm;
delete [] ny_msm;
delete [] nz_msm;
delete [] nxlo_in;
delete [] nylo_in;
delete [] nzlo_in;
delete [] nxhi_in;
delete [] nyhi_in;
delete [] nzhi_in;
delete [] nxlo_out;
delete [] nylo_out;
delete [] nzlo_out;
delete [] nxhi_out;
delete [] nyhi_out;
delete [] nzhi_out;
delete [] delxinv;
delete [] delyinv;
delete [] delzinv;
delete [] qgrid;
delete [] egrid;
delete [] v0grid;
delete [] v1grid;
delete [] v2grid;
delete [] v3grid;
delete [] v4grid;
delete [] v5grid;
}
/* ----------------------------------------------------------------------
set total size of MSM grids
------------------------------------------------------------------------- */
void MSM::set_grid_global()
{
if (accuracy_relative <= 0.0)
error->all(FLERR,"KSpace accuracy must be > 0");
double xprd = domain->xprd;
double yprd = domain->yprd;
double zprd = domain->zprd;
int nx_max,ny_max,nz_max;
double hx,hy,hz;
if (adjust_cutoff_flag && !gridflag) {
// seek to choose optimal Coulombic cutoff and number of grid levels
// (based on a cost estimate in Hardy's thesis)
int p = order - 1;
double hmin = 3072.0*(p+1)/(p-1)/
(448.0*MY_PI + 56.0*MY_PI*order/2 + 1701.0);
hmin = pow(hmin,1.0/6.0)*pow(xprd*yprd*zprd/atom->natoms,1.0/3.0);
nx_max = static_cast<int>(xprd/hmin);
ny_max = static_cast<int>(yprd/hmin);
nz_max = static_cast<int>(zprd/hmin);
nx_max = MAX(nx_max,2);
ny_max = MAX(ny_max,2);
nz_max = MAX(nz_max,2);
} else if (!gridflag) {
// Coulombic cutoff is set by user, choose grid to give requested error
nx_max = ny_max = nz_max = 2;
hx = xprd/nx_max;
hy = yprd/ny_max;
hz = zprd/nz_max;
double x_error = 2.0*accuracy;
double y_error = 2.0*accuracy;
double z_error = 2.0*accuracy;
while (x_error > accuracy) {
nx_max *= 2;
hx = xprd/nx_max;
x_error = estimate_1d_error(hx,xprd);
}
while (y_error > accuracy) {
ny_max *= 2;
hy = yprd/ny_max;
y_error = estimate_1d_error(hy,yprd);
}
while (z_error > accuracy) {
nz_max *= 2;
hz = zprd/nz_max;
z_error = estimate_1d_error(hz,zprd);
}
} else {
// cutoff and grid are set by user
nx_max = nx_msm_max;
ny_max = ny_msm_max;
nz_max = nz_msm_max;
}
// adjust Coulombic cutoff to give desired error (if requested)
if (adjust_cutoff_flag) {
hx = xprd/nx_max;
hy = yprd/ny_max;
hz = zprd/nz_max;
double ax,ay,az;
ax = estimate_cutoff(hx,xprd);
ay = estimate_cutoff(hy,yprd);
az = estimate_cutoff(hz,zprd);
cutoff = sqrt(ax*ax + ay*ay + az*az)/sqrt(3.0);
int itmp;
double *p_cutoff = (double *) force->pair->extract("cut_coul",itmp);
*p_cutoff = cutoff;
char str[128];
sprintf(str,"Adjusting Coulombic cutoff for MSM, new cutoff = %g",cutoff);
if (me == 0) error->warning(FLERR,str);
}
// scale grid for triclinic skew
if (triclinic && !gridflag) {
double tmp[3];
tmp[0] = nx_max/xprd;
tmp[1] = ny_max/yprd;
tmp[2] = nz_max/zprd;
lamda2xT(&tmp[0],&tmp[0]);
nx_max = static_cast<int>(tmp[0]);
ny_max = static_cast<int>(tmp[1]);
nz_max = static_cast<int>(tmp[2]);
}
// boost grid size until it is factorable by 2
int flag = 0;
int xlevels,ylevels,zlevels;
while (!factorable(nx_max,flag,xlevels)) nx_max++;
while (!factorable(ny_max,flag,ylevels)) ny_max++;
while (!factorable(nz_max,flag,zlevels)) nz_max++;
if (flag && gridflag && me == 0)
error->warning(FLERR,"Number of MSM mesh points increased to be a multiple of 2");
if (triclinic == 0) {
h_x = xprd/nx_max;
h_y = yprd/ny_max;
h_z = zprd/nz_max;
} else {
double tmp[3];
tmp[0] = nx_max;
tmp[1] = ny_max;
tmp[2] = nz_max;
x2lamdaT(&tmp[0],&tmp[0]);
h_x = 1.0/tmp[0];
h_y = 1.0/tmp[1];
h_z = 1.0/tmp[2];
}
// find maximum number of levels
levels = MAX(xlevels,ylevels);
levels = MAX(levels,zlevels);
if (levels > MAX_LEVELS) error->all(FLERR,"Too many MSM grid levels");
// need at least 2 MSM levels for periodic systems
if (levels <= 1) {
levels = xlevels = ylevels = zlevels = 2;
nx_max = ny_max = nz_max = 2;
if (gridflag)
error->warning(FLERR,
"MSM mesh too small, increasing to 2 points in each direction");
}
// omit top grid level for periodic systems
if (!domain->nonperiodic) levels -= 1;
allocate_levels();
// find number of grid levels in each direction
for (int n = 0; n < levels; n++) {
if (xlevels-n-1 > 0)
nx_msm[n] = static_cast<int> (pow(2.0,xlevels-n-1));
else
nx_msm[n] = 1;
if (ylevels-n-1 > 0)
ny_msm[n] = static_cast<int> (pow(2.0,ylevels-n-1));
else
ny_msm[n] = 1;
if (zlevels-n-1 > 0)
nz_msm[n] = static_cast<int> (pow(2.0,zlevels-n-1));
else
nz_msm[n] = 1;
}
if (nx_msm[0] >= OFFSET || ny_msm[0] >= OFFSET || nz_msm[0] >= OFFSET)
error->all(FLERR,"MSM grid is too large");
// compute number of extra grid points needed for nonperiodic boundary conditions
if (domain->nonperiodic) {
alpha[0] = -(order/2 - 1);
betax[0] = nx_msm[0] + (order/2 - 1);
betay[0] = ny_msm[0] + (order/2 - 1);
betaz[0] = nz_msm[0] + (order/2 - 1);
for (int n = 1; n < levels; n++) {
alpha[n] = -((-alpha[n-1]+1)/2) - (order/2 - 1);
betax[n] = ((betax[n-1]+1)/2) + (order/2 - 1);
betay[n] = ((betay[n-1]+1)/2) + (order/2 - 1);
betaz[n] = ((betaz[n-1]+1)/2) + (order/2 - 1);
}
}
if (domain->nonperiodic) {
alpha[0] = -(order/2 - 1);
betax[0] = nx_msm[0] + (order/2 - 1);
betay[0] = ny_msm[0] + (order/2 - 1);
betaz[0] = nz_msm[0] + (order/2 - 1);
for (int n = 1; n < levels; n++) {
alpha[n] = -((-alpha[n-1]+1)/2) - (order/2 - 1);
betax[n] = ((betax[n-1]+1)/2) + (order/2 - 1);
betay[n] = ((betay[n-1]+1)/2) + (order/2 - 1);
betaz[n] = ((betaz[n-1]+1)/2) + (order/2 - 1);
}
}
}
/* ----------------------------------------------------------------------
set local subset of MSM grid that I own
n xyz lo/hi in = 3d grid that I own (inclusive)
n xyz lo/hi out = 3d grid + ghost cells in 6 directions (inclusive)
------------------------------------------------------------------------- */
void MSM::set_grid_local()
{
// loop over grid levels
for (int n=0; n<levels; n++) {
// global indices of MSM grid range from 0 to N-1
// nlo_in,nhi_in = lower/upper limits of the 3d sub-brick of
// global MSM grid that I own without ghost cells
nxlo_in[n] = static_cast<int> (comm->xsplit[comm->myloc[0]] * nx_msm[n]);
nxhi_in[n] = static_cast<int> (comm->xsplit[comm->myloc[0]+1] * nx_msm[n]) - 1;
nylo_in[n] = static_cast<int> (comm->ysplit[comm->myloc[1]] * ny_msm[n]);
nyhi_in[n] = static_cast<int> (comm->ysplit[comm->myloc[1]+1] * ny_msm[n]) - 1;
nzlo_in[n] = static_cast<int> (comm->zsplit[comm->myloc[2]] * nz_msm[n]);
nzhi_in[n] = static_cast<int> (comm->zsplit[comm->myloc[2]+1] * nz_msm[n]) - 1;
// nlower,nupper = stencil size for mapping (interpolating) particles to MSM grid
nlower = -(order-1)/2;
nupper = order/2;
// lengths of box and processor sub-domains
double *prd,*sublo,*subhi,*boxhi;
if (!triclinic) {
prd = domain->prd;
sublo = domain->sublo;
subhi = domain->subhi;
} else {
prd = domain->prd_lamda;
sublo = domain->sublo_lamda;
subhi = domain->subhi_lamda;
}
double xprd = prd[0];
double yprd = prd[1];
double zprd = prd[2];
// shift values for particle <-> grid mapping
// add/subtract OFFSET to avoid int(-0.75) = 0 when want it to be -1
// nlo_out,nhi_out = lower/upper limits of the 3d sub-brick of
// global MSM grid that my particles can contribute charge to
// effectively nlo_in,nhi_in + ghost cells
// nlo,nhi = global coords of grid pt to "lower left" of smallest/largest
// position a particle in my box can be at
// dist[3] = particle position bound = subbox + skin/2.0
// nlo_out,nhi_out = nlo,nhi + stencil size for particle mapping
double dist[3];
double cuthalf = 0.0;
if (n == 0) cuthalf = 0.5*neighbor->skin; // only applies to finest grid
dist[0] = dist[1] = dist[2] = cuthalf;
if (triclinic) kspacebbox(cuthalf,&dist[0]);
int nlo,nhi;
nlo = static_cast<int> ((sublo[0]-dist[0]-boxlo[0]) *
nx_msm[n]/xprd + OFFSET) - OFFSET;
nhi = static_cast<int> ((subhi[0]+dist[0]-boxlo[0]) *
nx_msm[n]/xprd + OFFSET) - OFFSET;
if (n == 0) {
// use a smaller ghost region for interpolation
nxlo_out_all = nlo + nlower;
nxhi_out_all = nhi + nupper;
}
// a larger ghost region is needed for the direct sum and for restriction/prolongation
nxlo_out[n] = nlo + MIN(-order,nxlo_direct);
nxhi_out[n] = nhi + MAX(order,nxhi_direct);
nlo = static_cast<int> ((sublo[1]-dist[1]-boxlo[1]) *
ny_msm[n]/yprd + OFFSET) - OFFSET;
nhi = static_cast<int> ((subhi[1]+dist[1]-boxlo[1]) *
ny_msm[n]/yprd + OFFSET) - OFFSET;
if (n == 0) {
nylo_out_all = nlo + nlower;
nyhi_out_all = nhi + nupper;
}
nylo_out[n] = nlo + MIN(-order,nylo_direct);
nyhi_out[n] = nhi + MAX(order,nyhi_direct);
nlo = static_cast<int> ((sublo[2]-dist[2]-boxlo[2]) *
nz_msm[n]/zprd + OFFSET) - OFFSET;
nhi = static_cast<int> ((subhi[2]+dist[2]-boxlo[2]) *
nz_msm[n]/zprd + OFFSET) - OFFSET;
if (n == 0) {
nzlo_out_all = nlo + nlower;
nzhi_out_all = nhi + nupper;
}
// a hemisphere is used for direct sum interactions,
// so no ghosting is needed for direct sum in the -z direction
nzlo_out[n] = nlo - order;
nzhi_out[n] = nhi + MAX(order,nzhi_direct);
// add extra grid points for nonperiodic boundary conditions
if (domain->nonperiodic) {
if (!domain->xperiodic) {
if (nxlo_in[n] == 0)
nxlo_in[n] = alpha[n];
nxlo_out[n] = MAX(nxlo_out[n],alpha[n]);
if (n == 0) nxlo_out_all = MAX(nxlo_out_all,alpha[0]);
if (nxhi_in[n] == nx_msm[n] - 1)
nxhi_in[n] = betax[n];
nxhi_out[n] = MIN(nxhi_out[n],betax[n]);
if (n == 0) nxhi_out_all = MIN(nxhi_out_all,betax[0]);
if (nxhi_in[n] < 0)
nxhi_in[n] = alpha[n] - 1;
}
if (!domain->yperiodic) {
if (nylo_in[n] == 0)
nylo_in[n] = alpha[n];
nylo_out[n] = MAX(nylo_out[n],alpha[n]);
if (n == 0) nylo_out_all = MAX(nylo_out_all,alpha[0]);
if (nyhi_in[n] == ny_msm[n] - 1)
nyhi_in[n] = betay[n];
nyhi_out[n] = MIN(nyhi_out[n],betay[n]);
if (n == 0) nyhi_out_all = MIN(nyhi_out_all,betay[0]);
if (nyhi_in[n] < 0)
nyhi_in[n] = alpha[n] - 1;
}
if (!domain->zperiodic) {
if (nzlo_in[n] == 0)
nzlo_in[n] = alpha[n];
nzlo_out[n] = MAX(nzlo_out[n],alpha[n]);
if (n == 0) nzlo_out_all = MAX(nzlo_out_all,alpha[0]);
if (nzhi_in[n] == nz_msm[n] - 1)
nzhi_in[n] = betaz[n];
nzhi_out[n] = MIN(nzhi_out[n],betaz[n]);
if (n == 0) nzhi_out_all = MIN(nzhi_out_all,betaz[0]);
if (nzhi_in[n] < 0)
nzhi_in[n] = alpha[n] - 1;
}
}
// prevent inactive processors from participating in MPI communication routines
set_proc_grid(n);
// MSM grids for this proc, including ghosts
ngrid[n] = (nxhi_out[n]-nxlo_out[n]+1) * (nyhi_out[n]-nylo_out[n]+1) *
(nzhi_out[n]-nzlo_out[n]+1);
}
}
/* ----------------------------------------------------------------------
find active procs and neighbor procs for each grid level
------------------------------------------------------------------------- */
void MSM::set_proc_grid(int n)
{
for (int i=0; i<3; i++)
myloc[i] = comm->myloc[i];
// size of inner MSM grid owned by this proc
int nxgrid_in = nxhi_in[n]-nxlo_in[n]+1;
int nygrid_in = nyhi_in[n]-nylo_in[n]+1;
int nzgrid_in = nzhi_in[n]-nzlo_in[n]+1;
int ngrid_in = nxgrid_in * nygrid_in * nzgrid_in;
// check to see if this proc owns any inner grid points on this grid level
// if not, deactivate by setting active_flag = 0
int cnt[3];
cnt[0] = 0;
if (myloc[1] == 0 && myloc[2] == 0)
if (nxgrid_in > 0)
cnt[0] = 1;
cnt[1] = 0;
if (myloc[0] == 0 && myloc[2] == 0)
if (nygrid_in > 0)
cnt[1] = 1;
cnt[2] = 0;
if (myloc[0] == 0 && myloc[1] == 0)
if (nzgrid_in > 0)
cnt[2] = 1;
MPI_Allreduce(&cnt[0],&procgrid[0],3,MPI_INT,MPI_SUM,world);
int color;
if (ngrid_in > 0) {
active_flag[n] = 1;
color = 0;
} else {
active_flag[n] = 0;
color = MPI_UNDEFINED;
}
// define a new MPI communicator for this grid level that only includes active procs
MPI_Comm_split(world,color,me,&world_levels[n]);
if (!active_flag[n]) return;
int procneigh[3][2]; // my 6 neighboring procs, 0/1 = left/right
// map processor IDs to new 3d processor grid
// produces myloc, procneigh
int periods[3];
periods[0] = periods[1] = periods[2] = 1;
MPI_Comm cartesian;
MPI_Cart_create(world_levels[n],3,procgrid,periods,0,&cartesian);
MPI_Cart_get(cartesian,3,procgrid,periods,myloc);
MPI_Cart_shift(cartesian,0,1,&procneigh[0][0],&procneigh[0][1]);
MPI_Cart_shift(cartesian,1,1,&procneigh[1][0],&procneigh[1][1]);
MPI_Cart_shift(cartesian,2,1,&procneigh[2][0],&procneigh[2][1]);
MPI_Comm_free(&cartesian);
for (int i=0; i<3; i++)
for (int j=0; j<2; j++)
procneigh_levels[n][i][j] = procneigh[i][j];
}
/* ----------------------------------------------------------------------
reset local grid arrays and communication stencils
called by fix balance b/c it changed sizes of processor sub-domains
------------------------------------------------------------------------- */
void MSM::setup_grid()
{
// free all arrays previously allocated
// pre-compute volume-dependent coeffs
// reset portion of global grid that each proc owns
// reallocate MSM long-range dependent memory
// don't invoke allocate_peratom(), compute() will allocate when needed
setup();
}
/* ----------------------------------------------------------------------
check if all factors of n are in list of factors
return 1 if yes, 0 if no
------------------------------------------------------------------------- */
int MSM::factorable(int n, int &flag, int &levels)
{
int i;
levels = 1;
while (n > 1) {
for (i = 0; i < nfactors; i++) {
if (n % factors[i] == 0) {
n /= factors[i];
levels++;
break;
}
}
if (i == nfactors) {
flag = 1;
return 0;
}
}
return 1;
}
/* ----------------------------------------------------------------------
find center grid pt for each of my particles
check that full stencil for the particle will fit in my 3d brick
store central grid pt indices in part2grid array
------------------------------------------------------------------------- */
void MSM::particle_map()
{
int nx,ny,nz;
double **x = atom->x;
int nlocal = atom->nlocal;
int flag = 0;
for (int i = 0; i < nlocal; i++) {
// (nx,ny,nz) = global coords of grid pt to "lower left" of charge
// current particle coord can be outside global and local box
// add/subtract OFFSET to avoid int(-0.75) = 0 when want it to be -1
nx = static_cast<int> ((x[i][0]-boxlo[0])*delxinv[0]+OFFSET) - OFFSET;
ny = static_cast<int> ((x[i][1]-boxlo[1])*delyinv[0]+OFFSET) - OFFSET;
nz = static_cast<int> ((x[i][2]-boxlo[2])*delzinv[0]+OFFSET) - OFFSET;
part2grid[i][0] = nx;
part2grid[i][1] = ny;
part2grid[i][2] = nz;
// check that entire stencil around nx,ny,nz will fit in my 3d brick
if (nx+nlower < nxlo_out[0] || nx+nupper > nxhi_out[0] ||
ny+nlower < nylo_out[0] || ny+nupper > nyhi_out[0] ||
nz+nlower < nzlo_out[0] || nz+nupper > nzhi_out[0]) flag = 1;
}
if (flag) error->one(FLERR,"Out of range atoms - cannot compute MSM");
}
/* ----------------------------------------------------------------------
aninterpolation: interpolate charges from particles to grid
------------------------------------------------------------------------- */
void MSM::make_rho()
{
//fprintf(screen,"MSM aninterpolation\n\n");
int i,l,m,n,nx,ny,nz,mx,my,mz;
double dx,dy,dz,x0,y0,z0;
// clear 3d density array
double ***qgridn = qgrid[0];
memset(&(qgridn[nzlo_out[0]][nylo_out[0]][nxlo_out[0]]),0,ngrid[0]*sizeof(double));
// loop over my charges, add their contribution to nearby grid points
// (nx,ny,nz) = global coords of grid pt to "lower left" of charge
// (dx,dy,dz) = distance to "lower left" grid pt
// (mx,my,mz) = global coords of moving stencil pt
double *q = atom->q;
double **x = atom->x;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) {
nx = part2grid[i][0];
ny = part2grid[i][1];
nz = part2grid[i][2];
dx = nx - (x[i][0]-boxlo[0])*delxinv[0];
dy = ny - (x[i][1]-boxlo[1])*delyinv[0];
dz = nz - (x[i][2]-boxlo[2])*delzinv[0];
compute_phis(dx,dy,dz);
z0 = q[i];
for (n = nlower; n <= nupper; n++) {
mz = n+nz;
y0 = z0*phi1d[2][n];
for (m = nlower; m <= nupper; m++) {
my = m+ny;
x0 = y0*phi1d[1][m];
for (l = nlower; l <= nupper; l++) {
mx = l+nx;
qgridn[mz][my][mx] += x0*phi1d[0][l];
}
}
}
}
}
/* ----------------------------------------------------------------------
MSM direct sum procedure for intermediate grid levels, solve Poisson's
equation to get energy, virial, etc.
------------------------------------------------------------------------- */
void MSM::direct(int n)
{
//fprintf(screen,"Direct contribution on level %i\n\n",n);
double ***qgridn = qgrid[n];
double ***egridn = egrid[n];
double ***v0gridn = v0grid[n];
double ***v1gridn = v1grid[n];
double ***v2gridn = v2grid[n];
double ***v3gridn = v3grid[n];
double ***v4gridn = v4grid[n];
double ***v5gridn = v5grid[n];
double *g_directn = g_direct[n];
double *v0_directn = v0_direct[n];
double *v1_directn = v1_direct[n];
double *v2_directn = v2_direct[n];
double *v3_directn = v3_direct[n];
double *v4_directn = v4_direct[n];
double *v5_directn = v5_direct[n];
// zero out electric potential
memset(&(egridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
// zero out virial
if (vflag_atom) {
memset(&(v0gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v1gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v2gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v3gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v4gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v5gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
}
int icx,icy,icz,ix,iy,iz,zk,zyk,k;
int ii,jj,kk;
int imin,imax,jmin,jmax,kmin,kmax;
double qtmp,qtmp2,gtmp;
double esum,v0sum,v1sum,v2sum,v3sum,v4sum,v5sum;
double **qk,**ek;
double *qkj,*ekj;
int nx = nxhi_direct - nxlo_direct + 1;
int ny = nyhi_direct - nylo_direct + 1;
// loop over inner grid points
for (icz = nzlo_in[n]; icz <= nzhi_in[n]; icz++) {
if (domain->zperiodic) {
kmin = nzlo_direct;
kmax = nzhi_direct;
} else {
kmin = MAX(nzlo_direct,alpha[n] - icz);
kmax = MIN(nzhi_direct,betaz[n] - icz);
}
for (icy = nylo_in[n]; icy <= nyhi_in[n]; icy++) {
if (domain->yperiodic) {
jmin = nylo_direct;
jmax = nyhi_direct;
} else {
jmin = MAX(nylo_direct,alpha[n] - icy);
jmax = MIN(nyhi_direct,betay[n] - icy);
}
for (icx = nxlo_in[n]; icx <= nxhi_in[n]; icx++) {
if (domain->xperiodic) {
imin = nxlo_direct;
imax = nxhi_direct;
} else {
imin = MAX(nxlo_direct,alpha[n] - icx);
imax = MIN(nxhi_direct,betax[n] - icx);
}
qtmp = qgridn[icz][icy][icx]; // charge on center grid point
esum = 0.0;
if (vflag_either)
v0sum = v1sum = v2sum = v3sum = v4sum = v5sum = 0.0;
// use hemisphere to avoid double computation of pair-wise
// interactions in direct sum (no computations in -z direction)
for (iz = 1; iz <= kmax; iz++) {
kk = icz+iz;
qk = qgridn[kk];
ek = egridn[kk];
zk = (iz + nzhi_direct)*ny;
for (iy = jmin; iy <= jmax; iy++) {
jj = icy+iy;
qkj = qk[jj];
ekj = ek[jj];
zyk = (zk + iy + nyhi_direct)*nx;
for (ix = imin; ix <= imax; ix++) {
ii = icx+ix;
qtmp2 = qkj[ii]; // charge on outer grid point
k = zyk + ix + nxhi_direct;
gtmp = g_directn[k];
esum += gtmp * qtmp2;
ekj[ii] += gtmp * qtmp;
if (vflag_either) {
v0sum += v0_directn[k] * qtmp2;
v1sum += v1_directn[k] * qtmp2;
v2sum += v2_directn[k] * qtmp2;
v3sum += v3_directn[k] * qtmp2;
v4sum += v4_directn[k] * qtmp2;
v5sum += v5_directn[k] * qtmp2;
}
}
}
}
// iz=0
iz = 0;
kk = icz+iz;
qk = qgridn[kk];
ek = egridn[kk];
zk = (iz + nzhi_direct)*ny;
for (iy = 1; iy <= jmax; iy++) {
jj = icy+iy;
qkj = qk[jj];
ekj = ek[jj];
zyk = (zk + iy + nyhi_direct)*nx;
for (ix = imin; ix <= imax; ix++) {
ii = icx+ix;
qtmp2 = qkj[ii];
k = zyk + ix + nxhi_direct;
gtmp = g_directn[k];
esum += gtmp * qtmp2;
ekj[ii] += gtmp * qtmp;
if (vflag_either) {
v0sum += v0_directn[k] * qtmp2;
v1sum += v1_directn[k] * qtmp2;
v2sum += v2_directn[k] * qtmp2;
v3sum += v3_directn[k] * qtmp2;
v4sum += v4_directn[k] * qtmp2;
v5sum += v5_directn[k] * qtmp2;
}
}
}
// iz=0, iy=0
iz = 0;
kk = icz+iz;
qk = qgridn[kk];
ek = egridn[kk];
zk = (iz + nzhi_direct)*ny;
iy = 0;
jj = icy+iy;
qkj = qk[jj];
ekj = ek[jj];
zyk = (zk + iy + nyhi_direct)*nx;
for (ix = 1; ix <= imax; ix++) {
ii = icx+ix;
qtmp2 = qkj[ii];
k = zyk + ix + nxhi_direct;
gtmp = g_directn[k];
esum += gtmp * qtmp2;
ekj[ii] += gtmp * qtmp;
if (vflag_either) {
v0sum += v0_directn[k] * qtmp2;
v1sum += v1_directn[k] * qtmp2;
v2sum += v2_directn[k] * qtmp2;
v3sum += v3_directn[k] * qtmp2;
v4sum += v4_directn[k] * qtmp2;
v5sum += v5_directn[k] * qtmp2;
}
}
// iz=0, iy=0, ix=0
iz = 0;
zk = (iz + nzhi_direct)*ny;
iy = 0;
zyk = (zk + iy + nyhi_direct)*nx;
ix = 0;
k = zyk + ix + nxhi_direct;
gtmp = g_directn[k];
esum += 0.5 * gtmp * qtmp;
egridn[icz][icy][icx] += 0.5 * gtmp * qtmp;
// virial is zero for iz=0, iy=0, ix=0
// accumulate per-atom energy/virial
egridn[icz][icy][icx] += esum;
if (vflag_atom) {
v0gridn[icz][icy][icx] += v0sum;
v1gridn[icz][icy][icx] += v1sum;
v2gridn[icz][icy][icx] += v2sum;
v3gridn[icz][icy][icx] += v3sum;
v4gridn[icz][icy][icx] += v4sum;
v5gridn[icz][icy][icx] += v5sum;
}
// accumulate total energy/virial
if (evflag) {
qtmp = qgridn[icz][icy][icx];
if (eflag_global) energy += 2.0 * esum * qtmp;
if (vflag_global) {
virial[0] += 2.0 * v0sum * qtmp;
virial[1] += 2.0 * v1sum * qtmp;
virial[2] += 2.0 * v2sum * qtmp;
virial[3] += 2.0 * v3sum * qtmp;
virial[4] += 2.0 * v4sum * qtmp;
virial[5] += 2.0 * v5sum * qtmp;
}
}
}
}
}
// compute per-atom virial (if requested)
if (vflag_atom)
direct_peratom(n);
}
/* ----------------------------------------------------------------------
MSM direct sum procedure for intermediate grid levels, solve Poisson's
equation to get per-atom virial, separate method used for performance
reasons
------------------------------------------------------------------------- */
void MSM::direct_peratom(int n)
{
//fprintf(screen,"Direct contribution on level %i\n\n",n);
double ***qgridn = qgrid[n];
double ***v0gridn = v0grid[n];
double ***v1gridn = v1grid[n];
double ***v2gridn = v2grid[n];
double ***v3gridn = v3grid[n];
double ***v4gridn = v4grid[n];
double ***v5gridn = v5grid[n];
int icx,icy,icz,ix,iy,iz,zk,zyk,k;
int ii,jj,kk;
int imin,imax,jmin,jmax,kmin,kmax;
double qtmp;
int nx = nxhi_direct - nxlo_direct + 1;
int ny = nyhi_direct - nylo_direct + 1;
// loop over inner grid points
for (icz = nzlo_in[n]; icz <= nzhi_in[n]; icz++) {
if (domain->zperiodic) {
kmin = nzlo_direct;
kmax = nzhi_direct;
} else {
kmin = MAX(nzlo_direct,alpha[n] - icz);
kmax = MIN(nzhi_direct,betaz[n] - icz);
}
for (icy = nylo_in[n]; icy <= nyhi_in[n]; icy++) {
if (domain->yperiodic) {
jmin = nylo_direct;
jmax = nyhi_direct;
} else {
jmin = MAX(nylo_direct,alpha[n] - icy);
jmax = MIN(nyhi_direct,betay[n] - icy);
}
for (icx = nxlo_in[n]; icx <= nxhi_in[n]; icx++) {
if (domain->xperiodic) {
imin = nxlo_direct;
imax = nxhi_direct;
} else {
imin = MAX(nxlo_direct,alpha[n] - icx);
imax = MIN(nxhi_direct,betax[n] - icx);
}
qtmp = qgridn[icz][icy][icx]; // center grid point
// use hemisphere to avoid double computation of pair-wise
// interactions in direct sum (no computations in -z direction)
for (iz = 1; iz <= kmax; iz++) {
kk = icz+iz;
zk = (iz + nzhi_direct)*ny;
for (iy = jmin; iy <= jmax; iy++) {
jj = icy+iy;
zyk = (zk + iy + nyhi_direct)*nx;
for (ix = imin; ix <= imax; ix++) {
ii = icx+ix;
k = zyk + ix + nxhi_direct;
v0gridn[kk][jj][ii] += v0_direct[n][k] * qtmp;
v1gridn[kk][jj][ii] += v1_direct[n][k] * qtmp;
v2gridn[kk][jj][ii] += v2_direct[n][k] * qtmp;
v3gridn[kk][jj][ii] += v3_direct[n][k] * qtmp;
v4gridn[kk][jj][ii] += v4_direct[n][k] * qtmp;
v5gridn[kk][jj][ii] += v5_direct[n][k] * qtmp;
}
}
}
// iz=0
iz = 0;
kk = icz+iz;
zk = (iz + nzhi_direct)*ny;
for (iy = 1; iy <= jmax; iy++) {
jj = icy+iy;
zyk = (zk + iy + nyhi_direct)*nx;
for (ix = imin; ix <= imax; ix++) {
ii = icx+ix;
k = zyk + ix + nxhi_direct;
v0gridn[kk][jj][ii] += v0_direct[n][k] * qtmp;
v1gridn[kk][jj][ii] += v1_direct[n][k] * qtmp;
v2gridn[kk][jj][ii] += v2_direct[n][k] * qtmp;
v3gridn[kk][jj][ii] += v3_direct[n][k] * qtmp;
v4gridn[kk][jj][ii] += v4_direct[n][k] * qtmp;
v5gridn[kk][jj][ii] += v5_direct[n][k] * qtmp;
}
}
// iz=0, iy=0
iz = 0;
kk = icz+iz;
zk = (iz + nzhi_direct)*ny;
iy = 0;
jj = icy+iy;
zyk = (zk + iy + nyhi_direct)*nx;
for (ix = 1; ix <= imax; ix++) {
ii = icx+ix;
k = zyk + ix + nxhi_direct;
v0gridn[kk][jj][ii] += v0_direct[n][k] * qtmp;
v1gridn[kk][jj][ii] += v1_direct[n][k] * qtmp;
v2gridn[kk][jj][ii] += v2_direct[n][k] * qtmp;
v3gridn[kk][jj][ii] += v3_direct[n][k] * qtmp;
v4gridn[kk][jj][ii] += v4_direct[n][k] * qtmp;
v5gridn[kk][jj][ii] += v5_direct[n][k] * qtmp;
}
// virial is zero for iz=0, iy=0, ix=0
}
}
}
}
/* ----------------------------------------------------------------------
MSM direct sum procedure for top grid level (nonperiodic systems only)
------------------------------------------------------------------------- */
void MSM::direct_top(int n)
{
//fprintf(screen,"Direct contribution on level %i\n\n",n);
double ***qgridn = qgrid[n];
double ***egridn = egrid[n];
double ***v0gridn = v0grid[n];
double ***v1gridn = v1grid[n];
double ***v2gridn = v2grid[n];
double ***v3gridn = v3grid[n];
double ***v4gridn = v4grid[n];
double ***v5gridn = v5grid[n];
// zero out electric potential
memset(&(egridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
// zero out virial
if (vflag_atom) {
memset(&(v0gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v1gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v2gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v3gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v4gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
memset(&(v5gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]]),0,ngrid[n]*sizeof(double));
}
int icx,icy,icz,ix,iy,iz,zk,zyk,k;
int ii,jj,kk;
int imin,imax,jmin,jmax,kmin,kmax;
double qtmp,qtmp2,gtmp;
double esum,v0sum,v1sum,v2sum,v3sum,v4sum,v5sum;
double **qk,**ek;
double *qkj,*ekj;
int nx_top = betax[n] - alpha[n];
int ny_top = betay[n] - alpha[n];
int nz_top = betaz[n] - alpha[n];
int nx = 2*nx_top + 1;
int ny = 2*ny_top + 1;
// loop over inner grid points
for (icz = nzlo_in[n]; icz <= nzhi_in[n]; icz++) {
if (domain->zperiodic) {
kmin = 0;
kmax = nz_msm[n]-1;
} else {
kmin = alpha[n] - icz;
kmax = betaz[n] - icz;
}
for (icy = nylo_in[n]; icy <= nyhi_in[n]; icy++) {
if (domain->yperiodic) {
jmin = 0;
jmax = ny_msm[n]-1;
} else {
jmin = alpha[n] - icy;
jmax = betay[n] - icy;
}
for (icx = nxlo_in[n]; icx <= nxhi_in[n]; icx++) {
if (domain->xperiodic) {
imin = 0;
imax = nx_msm[n]-1;
} else {
imin = alpha[n] - icx;
imax = betax[n] - icx;
}
qtmp = qgridn[icz][icy][icx];
esum = 0.0;
if (vflag_either)
v0sum = v1sum = v2sum = v3sum = v4sum = v5sum = 0.0;
// use hemisphere to avoid double computation of pair-wise
// interactions in direct sum (no computations in -z direction)
for (iz = 1; iz <= kmax; iz++) {
kk = icz+iz;
qk = qgridn[kk];
ek = egridn[kk];
zk = (iz + nz_top)*ny;
for (iy = jmin; iy <= jmax; iy++) {
jj = icy+iy;
qkj = qk[jj];
ekj = ek[jj];
zyk = (zk + iy + ny_top)*nx;
for (ix = imin; ix <= imax; ix++) {
ii = icx+ix;
qtmp2 = qkj[ii];
k = zyk + ix + nx_top;
gtmp = g_direct_top[k];
esum += gtmp * qtmp2;
ekj[ii] += gtmp * qtmp;
if (vflag_either) {
v0sum += v0_direct_top[k] * qtmp2;
v1sum += v1_direct_top[k] * qtmp2;
v2sum += v2_direct_top[k] * qtmp2;
v3sum += v3_direct_top[k] * qtmp2;
v4sum += v4_direct_top[k] * qtmp2;
v5sum += v5_direct_top[k] * qtmp2;
}
}
}
}
// iz=0
iz = 0;
kk = icz+iz;
qk = qgridn[kk];
ek = egridn[kk];
zk = (iz + nz_top)*ny;
for (iy = 1; iy <= jmax; iy++) {
jj = icy+iy;
qkj = qk[jj];
ekj = ek[jj];
zyk = (zk + iy + ny_top)*nx;
for (ix = imin; ix <= imax; ix++) {
ii = icx+ix;
qtmp2 = qkj[ii];
k = zyk + ix + nx_top;
gtmp = g_direct_top[k];
esum += gtmp * qtmp2;
ekj[ii] += gtmp * qtmp;
if (vflag_either) {
v0sum += v0_direct_top[k] * qtmp2;
v1sum += v1_direct_top[k] * qtmp2;
v2sum += v2_direct_top[k] * qtmp2;
v3sum += v3_direct_top[k] * qtmp2;
v4sum += v4_direct_top[k] * qtmp2;
v5sum += v5_direct_top[k] * qtmp2;
}
}
}
// iz=0, iy=0
iz = 0;
kk = icz+iz;
qk = qgridn[kk];
ek = egridn[kk];
zk = (iz + nz_top)*ny;
iy = 0;
jj = icy+iy;
qkj = qk[jj];
ekj = ek[jj];
zyk = (zk + iy + ny_top)*nx;
for (ix = 1; ix <= imax; ix++) {
ii = icx+ix;
qtmp2 = qkj[ii];
k = zyk + ix + nx_top;
gtmp = g_direct_top[k];
esum += gtmp * qtmp2;
ekj[ii] += gtmp * qtmp;
if (vflag_either) {
v0sum += v0_direct_top[k] * qtmp2;
v1sum += v1_direct_top[k] * qtmp2;
v2sum += v2_direct_top[k] * qtmp2;
v3sum += v3_direct_top[k] * qtmp2;
v4sum += v4_direct_top[k] * qtmp2;
v5sum += v5_direct_top[k] * qtmp2;
}
}
// iz=0, iy=0, ix=0
iz = 0;
zk = (iz + nz_top)*ny;
iy = 0;
zyk = (zk + iy + ny_top)*nx;
ix = 0;
ii = icx+ix;
k = zyk + ix + nx_top;
gtmp = g_direct_top[k];
esum += 0.5 * gtmp * qtmp;
egridn[icz][icy][icx] += 0.5 * gtmp * qtmp;
if (vflag_either) {
v0sum += v0_direct_top[k] * qtmp;
v1sum += v1_direct_top[k] * qtmp;
v2sum += v2_direct_top[k] * qtmp;
v3sum += v3_direct_top[k] * qtmp;
v4sum += v4_direct_top[k] * qtmp;
v5sum += v5_direct_top[k] * qtmp;
}
// accumulate per-atom energy/virial
egridn[icz][icy][icx] += esum;
if (vflag_atom) {
v0gridn[icz][icy][icx] += v0sum;
v1gridn[icz][icy][icx] += v1sum;
v2gridn[icz][icy][icx] += v2sum;
v3gridn[icz][icy][icx] += v3sum;
v4gridn[icz][icy][icx] += v4sum;
v5gridn[icz][icy][icx] += v5sum;
}
// accumulate total energy/virial
if (evflag) {
qtmp = qgridn[icz][icy][icx];
if (eflag_global) energy += 2.0 * esum * qtmp;
if (vflag_global) {
virial[0] += 2.0 * v0sum * qtmp;
virial[1] += 2.0 * v1sum * qtmp;
virial[2] += 2.0 * v2sum * qtmp;
virial[3] += 2.0 * v3sum * qtmp;
virial[4] += 2.0 * v4sum * qtmp;
virial[5] += 2.0 * v5sum * qtmp;
}
}
}
}
}
// compute per-atom virial (if requested)
if (vflag_atom)
direct_peratom_top(n);
}
/* ----------------------------------------------------------------------
MSM direct sum procedure for top grid level, solve Poisson's
equation to get per-atom virial, separate method used for performance
reasons
------------------------------------------------------------------------- */
void MSM::direct_peratom_top(int n)
{
double ***qgridn = qgrid[n];
double ***v0gridn = v0grid[n];
double ***v1gridn = v1grid[n];
double ***v2gridn = v2grid[n];
double ***v3gridn = v3grid[n];
double ***v4gridn = v4grid[n];
double ***v5gridn = v5grid[n];
int icx,icy,icz,ix,iy,iz,zk,zyk,k;
int ii,jj,kk;
int imin,imax,jmin,jmax,kmin,kmax;
double qtmp;
int nx_top = betax[n] - alpha[n];
int ny_top = betay[n] - alpha[n];
int nz_top = betaz[n] - alpha[n];
int nx = 2*nx_top + 1;
int ny = 2*ny_top + 1;
// loop over inner grid points
for (icz = nzlo_in[n]; icz <= nzhi_in[n]; icz++) {
if (domain->zperiodic) {
kmin = 0;
kmax = nz_msm[n]-1;
} else {
kmin = alpha[n] - icz;
kmax = betaz[n] - icz;
}
for (icy = nylo_in[n]; icy <= nyhi_in[n]; icy++) {
if (domain->yperiodic) {
jmin = 0;
jmax = ny_msm[n]-1;
} else {
jmin = alpha[n] - icy;
jmax = betay[n] - icy;
}
for (icx = nxlo_in[n]; icx <= nxhi_in[n]; icx++) {
if (domain->xperiodic) {
imin = 0;
imax = nx_msm[n]-1;
} else {
imin = alpha[n] - icx;
imax = betax[n] - icx;
}
qtmp = qgridn[icz][icy][icx]; // center grid point
// use hemisphere to avoid double computation of pair-wise
// interactions in direct sum (no computations in -z direction)
for (iz = 1; iz <= kmax; iz++) {
kk = icz+iz;
zk = (iz + nz_top)*ny;
for (iy = jmin; iy <= jmax; iy++) {
jj = icy+iy;
zyk = (zk + iy + ny_top)*nx;
for (ix = imin; ix <= imax; ix++) {
ii = icx+ix;
k = zyk + ix + nx_top;
v0gridn[kk][jj][ii] += v0_direct_top[k] * qtmp;
v1gridn[kk][jj][ii] += v1_direct_top[k] * qtmp;
v2gridn[kk][jj][ii] += v2_direct_top[k] * qtmp;
v3gridn[kk][jj][ii] += v3_direct_top[k] * qtmp;
v4gridn[kk][jj][ii] += v4_direct_top[k] * qtmp;
v5gridn[kk][jj][ii] += v5_direct_top[k] * qtmp;
}
}
}
// iz=0
iz = 0;
kk = icz+iz;
zk = (iz + nz_top)*ny;
for (iy = 1; iy <= jmax; iy++) {
jj = icy+iy;
zyk = (zk + iy + ny_top)*nx;
for (ix = imin; ix <= imax; ix++) {
ii = icx+ix;
k = zyk + ix + nx_top;
v0gridn[kk][jj][ii] += v0_direct_top[k] * qtmp;
v1gridn[kk][jj][ii] += v1_direct_top[k] * qtmp;
v2gridn[kk][jj][ii] += v2_direct_top[k] * qtmp;
v3gridn[kk][jj][ii] += v3_direct_top[k] * qtmp;
v4gridn[kk][jj][ii] += v4_direct_top[k] * qtmp;
v5gridn[kk][jj][ii] += v5_direct_top[k] * qtmp;
}
}
// iz=0, iy=0
iz = 0;
kk = icz+iz;
zk = (iz + nz_top)*ny;
iy = 0;
jj = icy+iy;
zyk = (zk + iy + ny_top)*nx;
for (ix = 1; ix <= imax; ix++) {
ii = icx+ix;
k = zyk + ix + nx_top;
v0gridn[kk][jj][ii] += v0_direct_top[k] * qtmp;
v1gridn[kk][jj][ii] += v1_direct_top[k] * qtmp;
v2gridn[kk][jj][ii] += v2_direct_top[k] * qtmp;
v3gridn[kk][jj][ii] += v3_direct_top[k] * qtmp;
v4gridn[kk][jj][ii] += v4_direct_top[k] * qtmp;
v5gridn[kk][jj][ii] += v5_direct_top[k] * qtmp;
}
// virial is zero for iz=0, iy=0, ix=0
}
}
}
}
/* ----------------------------------------------------------------------
MSM restriction procedure for intermediate grid levels, interpolate
charges from finer grid to coarser grid
------------------------------------------------------------------------- */
void MSM::restriction(int n)
{
//fprintf(screen,"Restricting from level %i to %i\n\n",n,n+1);
int p = order-1;
double ***qgrid1 = qgrid[n];
double ***qgrid2 = qgrid[n+1];
int k = 0;
int index[p+2];
for (int nu=-p; nu<=p; nu++) {
if (nu%2 == 0 && nu != 0) continue;
phi1d[0][k] = compute_phi(nu*delxinv[n+1]/delxinv[n]);
phi1d[1][k] = compute_phi(nu*delyinv[n+1]/delyinv[n]);
phi1d[2][k] = compute_phi(nu*delzinv[n+1]/delzinv[n]);
index[k] = nu;
k++;
}
int ip,jp,kp,ic,jc,kc,i,j;
int ii,jj,kk;
double phiz,phizy,q2sum;
// zero out charge on coarser grid
memset(&(qgrid2[nzlo_out[n+1]][nylo_out[n+1]][nxlo_out[n+1]]),0,ngrid[n+1]*sizeof(double));
for (kp = nzlo_in[n+1]; kp <= nzhi_in[n+1]; kp++)
for (jp = nylo_in[n+1]; jp <= nyhi_in[n+1]; jp++)
for (ip = nxlo_in[n+1]; ip <= nxhi_in[n+1]; ip++) {
ic = ip * static_cast<int> (delxinv[n]/delxinv[n+1]);
jc = jp * static_cast<int> (delyinv[n]/delyinv[n+1]);
kc = kp * static_cast<int> (delzinv[n]/delzinv[n+1]);
q2sum = 0.0;
for (k=0; k<=p+1; k++) {
kk = kc+index[k];
if (!domain->zperiodic) {
if (kk < alpha[n]) continue;
if (kk > betaz[n]) break;
}
phiz = phi1d[2][k];
for (j=0; j<=p+1; j++) {
jj = jc+index[j];
if (!domain->yperiodic) {
if (jj < alpha[n]) continue;
if (jj > betay[n]) break;
}
phizy = phi1d[1][j]*phiz;
for (i=0; i<=p+1; i++) {
ii = ic+index[i];
if (!domain->xperiodic) {
if (ii < alpha[n]) continue;
if (ii > betax[n]) break;
}
q2sum += qgrid1[kk][jj][ii] *
phi1d[0][i]*phizy;
}
}
}
qgrid2[kp][jp][ip] += q2sum;
}
}
/* ----------------------------------------------------------------------
MSM prolongation procedure for intermediate grid levels, interpolate
per-atom energy/virial from coarser grid to finer grid
------------------------------------------------------------------------- */
void MSM::prolongation(int n)
{
//fprintf(screen,"Prolongating from level %i to %i\n\n",n+1,n);
int p = order-1;
double ***egrid1 = egrid[n];
double ***egrid2 = egrid[n+1];
double ***v0grid1 = v0grid[n];
double ***v0grid2 = v0grid[n+1];
double ***v1grid1 = v1grid[n];
double ***v1grid2 = v1grid[n+1];
double ***v2grid1 = v2grid[n];
double ***v2grid2 = v2grid[n+1];
double ***v3grid1 = v3grid[n];
double ***v3grid2 = v3grid[n+1];
double ***v4grid1 = v4grid[n];
double ***v4grid2 = v4grid[n+1];
double ***v5grid1 = v5grid[n];
double ***v5grid2 = v5grid[n+1];
int k = 0;
int index[p+2];
for (int nu=-p; nu<=p; nu++) {
if (nu%2 == 0 && nu != 0) continue;
phi1d[0][k] = compute_phi(nu*delxinv[n+1]/delxinv[n]);
phi1d[1][k] = compute_phi(nu*delyinv[n+1]/delyinv[n]);
phi1d[2][k] = compute_phi(nu*delzinv[n+1]/delzinv[n]);
index[k] = nu;
k++;
}
int ip,jp,kp,ic,jc,kc,i,j;
int ii,jj,kk;
double phiz,phizy,phi3d;
double etmp2,v0tmp2,v1tmp2,v2tmp2,v3tmp2,v4tmp2,v5tmp2;
for (kp = nzlo_in[n+1]; kp <= nzhi_in[n+1]; kp++)
for (jp = nylo_in[n+1]; jp <= nyhi_in[n+1]; jp++)
for (ip = nxlo_in[n+1]; ip <= nxhi_in[n+1]; ip++) {
ic = ip * static_cast<int> (delxinv[n]/delxinv[n+1]);
jc = jp * static_cast<int> (delyinv[n]/delyinv[n+1]);
kc = kp * static_cast<int> (delzinv[n]/delzinv[n+1]);
etmp2 = egrid2[kp][jp][ip];
if (vflag_atom) {
v0tmp2 = v0grid2[kp][jp][ip];
v1tmp2 = v1grid2[kp][jp][ip];
v2tmp2 = v2grid2[kp][jp][ip];
v3tmp2 = v3grid2[kp][jp][ip];
v4tmp2 = v4grid2[kp][jp][ip];
v5tmp2 = v5grid2[kp][jp][ip];
}
for (k=0; k<=p+1; k++) {
kk = kc+index[k];
if (!domain->zperiodic) {
if (kk < alpha[n]) continue;
if (kk > betaz[n]) break;
}
phiz = phi1d[2][k];
for (j=0; j<=p+1; j++) {
jj = jc+index[j];
if (!domain->yperiodic) {
if (jj < alpha[n]) continue;
if (jj > betay[n]) break;
}
phizy = phi1d[1][j]*phiz;
for (i=0; i<=p+1; i++) {
ii = ic+index[i];
if (!domain->xperiodic) {
if (ii < alpha[n]) continue;
if (ii > betax[n]) break;
}
phi3d = phi1d[0][i]*phizy;
egrid1[kk][jj][ii] += etmp2 * phi3d;
if (vflag_atom) {
v0grid1[kk][jj][ii] += v0tmp2 * phi3d;
v1grid1[kk][jj][ii] += v1tmp2 * phi3d;
v2grid1[kk][jj][ii] += v2tmp2 * phi3d;
v3grid1[kk][jj][ii] += v3tmp2 * phi3d;
v4grid1[kk][jj][ii] += v4tmp2 * phi3d;
v5grid1[kk][jj][ii] += v5tmp2 * phi3d;
}
}
}
}
}
}
/* ----------------------------------------------------------------------
Use MPI_Allreduce to fill ghost grid values, for coarse grids this may
be cheaper than using nearest-neighbor communication (commgrid), right
now only works for periodic boundary conditions
------------------------------------------------------------------------- */
void MSM::grid_swap_forward(int n, double*** &gridn)
{
double ***gridn_tmp;
memory->create(gridn_tmp,nz_msm[n],ny_msm[n],nx_msm[n],"msm:grid_tmp");
double ***gridn_all;
memory->create(gridn_all,nz_msm[n],ny_msm[n],nx_msm[n],"msm:grid_all");
int ngrid_in = nx_msm[n] * ny_msm[n] * nz_msm[n];
memset(&(gridn_tmp[0][0][0]),0,ngrid_in*sizeof(double));
memset(&(gridn_all[0][0][0]),0,ngrid_in*sizeof(double));
// copy inner grid cell values from gridn into gridn_tmp
int icx,icy,icz;
for (icz = nzlo_in[n]; icz <= nzhi_in[n]; icz++)
for (icy = nylo_in[n]; icy <= nyhi_in[n]; icy++)
for (icx = nxlo_in[n]; icx <= nxhi_in[n]; icx++)
gridn_tmp[icz][icy][icx] = gridn[icz][icy][icx];
MPI_Allreduce(&(gridn_tmp[0][0][0]),
&(gridn_all[0][0][0]),
ngrid_in,MPI_DOUBLE,MPI_SUM,world_levels[n]);
// bitmask for PBCs (only works for power of 2 numbers)
int PBCx,PBCy,PBCz;
PBCx = nx_msm[n]-1;
PBCy = ny_msm[n]-1;
PBCz = nz_msm[n]-1;
// copy from gridn_all into gridn to fill ghost grid cell values
for (icz = nzlo_out[n]; icz <= nzhi_out[n]; icz++)
for (icy = nylo_out[n]; icy <= nyhi_out[n]; icy++)
for (icx = nxlo_out[n]; icx <= nxhi_out[n]; icx++)
gridn[icz][icy][icx] = gridn_all[icz&PBCz][icy&PBCy][icx&PBCx];
memory->destroy(gridn_tmp);
memory->destroy(gridn_all);
}
/* ----------------------------------------------------------------------
Use MPI_Allreduce to get contribution from ghost grid cells, for coarse
grids this may be cheaper than using nearest-neighbor communication
(commgrid), right now only works for periodic boundary conditions
------------------------------------------------------------------------- */
void MSM::grid_swap_reverse(int n, double*** &gridn)
{
double ***gridn_tmp;
memory->create(gridn_tmp,nz_msm[n],ny_msm[n],nx_msm[n],"msm:grid_tmp");
double ***gridn_all;
memory->create(gridn_all,nz_msm[n],ny_msm[n],nx_msm[n],"msm:grid_all");
int ngrid_in = nx_msm[n] * ny_msm[n] * nz_msm[n];
memset(&(gridn_tmp[0][0][0]),0,ngrid_in*sizeof(double));
memset(&(gridn_all[0][0][0]),0,ngrid_in*sizeof(double));
// bitmask for PBCs (only works for power of 2 numbers)
int icx,icy,icz;
int PBCx,PBCy,PBCz;
PBCx = nx_msm[n]-1;
PBCy = ny_msm[n]-1;
PBCz = nz_msm[n]-1;
// copy ghost grid cell values from gridn into inner portion of gridn_tmp
for (icz = nzlo_out[n]; icz <= nzhi_out[n]; icz++)
for (icy = nylo_out[n]; icy <= nyhi_out[n]; icy++)
for (icx = nxlo_out[n]; icx <= nxhi_out[n]; icx++)
gridn_tmp[icz&PBCz][icy&PBCy][icx&PBCx] += gridn[icz][icy][icx];
MPI_Allreduce(&(gridn_tmp[0][0][0]),
&(gridn_all[0][0][0]),
ngrid_in,MPI_DOUBLE,MPI_SUM,world_levels[n]);
// copy inner grid cell values from gridn_all into gridn
for (icz = nzlo_in[n]; icz <= nzhi_in[n]; icz++)
for (icy = nylo_in[n]; icy <= nyhi_in[n]; icy++)
for (icx = nxlo_in[n]; icx <= nxhi_in[n]; icx++)
gridn[icz][icy][icx] = gridn_all[icz][icy][icx];
memory->destroy(gridn_tmp);
memory->destroy(gridn_all);
}
/* ----------------------------------------------------------------------
pack own values to buf to send to another proc (used by commgrid)
------------------------------------------------------------------------- */
void MSM::pack_forward(int flag, double *buf, int nlist, int *list)
{
int n = current_level;
double ***qgridn = qgrid[n];
double ***egridn = egrid[n];
double ***v0gridn = v0grid[n];
double ***v1gridn = v1grid[n];
double ***v2gridn = v2grid[n];
double ***v3gridn = v3grid[n];
double ***v4gridn = v4grid[n];
double ***v5gridn = v5grid[n];
int k = 0;
if (flag == FORWARD_RHO) {
double *qsrc = &qgridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++) {
buf[k++] = qsrc[list[i]];
}
} else if (flag == FORWARD_AD) {
double *src = &egridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++)
buf[i] = src[list[i]];
} else if (flag == FORWARD_AD_PERATOM) {
double *v0src = &v0gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v1src = &v1gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v2src = &v2gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v3src = &v3gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v4src = &v4gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v5src = &v5gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++) {
buf[k++] = v0src[list[i]];
buf[k++] = v1src[list[i]];
buf[k++] = v2src[list[i]];
buf[k++] = v3src[list[i]];
buf[k++] = v4src[list[i]];
buf[k++] = v5src[list[i]];
}
}
}
/* ----------------------------------------------------------------------
unpack another proc's own values from buf and set own ghost values
------------------------------------------------------------------------- */
void MSM::unpack_forward(int flag, double *buf, int nlist, int *list)
{
int n = current_level;
double ***qgridn = qgrid[n];
double ***egridn = egrid[n];
double ***v0gridn = v0grid[n];
double ***v1gridn = v1grid[n];
double ***v2gridn = v2grid[n];
double ***v3gridn = v3grid[n];
double ***v4gridn = v4grid[n];
double ***v5gridn = v5grid[n];
int k = 0;
if (flag == FORWARD_RHO) {
double *dest = &qgridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++) {
dest[list[i]] = buf[k++];
}
} else if (flag == FORWARD_AD) {
double *dest = &egridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++)
dest[list[i]] = buf[k++];
} else if (flag == FORWARD_AD_PERATOM) {
double *v0src = &v0gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v1src = &v1gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v2src = &v2gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v3src = &v3gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v4src = &v4gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v5src = &v5gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++) {
v0src[list[i]] = buf[k++];
v1src[list[i]] = buf[k++];
v2src[list[i]] = buf[k++];
v3src[list[i]] = buf[k++];
v4src[list[i]] = buf[k++];
v5src[list[i]] = buf[k++];
}
}
}
/* ----------------------------------------------------------------------
pack ghost values into buf to send to another proc
------------------------------------------------------------------------- */
void MSM::pack_reverse(int flag, double *buf, int nlist, int *list)
{
int n = current_level;
double ***qgridn = qgrid[n];
double ***egridn = egrid[n];
double ***v0gridn = v0grid[n];
double ***v1gridn = v1grid[n];
double ***v2gridn = v2grid[n];
double ***v3gridn = v3grid[n];
double ***v4gridn = v4grid[n];
double ***v5gridn = v5grid[n];
int k = 0;
if (flag == REVERSE_RHO) {
double *qsrc = &qgridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++) {
buf[k++] = qsrc[list[i]];
}
} else if (flag == REVERSE_AD) {
double *src = &egridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++)
buf[i] = src[list[i]];
} else if (flag == REVERSE_AD_PERATOM) {
double *v0src = &v0gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v1src = &v1gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v2src = &v2gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v3src = &v3gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v4src = &v4gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v5src = &v5gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++) {
buf[k++] = v0src[list[i]];
buf[k++] = v1src[list[i]];
buf[k++] = v2src[list[i]];
buf[k++] = v3src[list[i]];
buf[k++] = v4src[list[i]];
buf[k++] = v5src[list[i]];
}
}
}
/* ----------------------------------------------------------------------
unpack another proc's ghost values from buf and add to own values
------------------------------------------------------------------------- */
void MSM::unpack_reverse(int flag, double *buf, int nlist, int *list)
{
int n = current_level;
double ***qgridn = qgrid[n];
double ***egridn = egrid[n];
double ***v0gridn = v0grid[n];
double ***v1gridn = v1grid[n];
double ***v2gridn = v2grid[n];
double ***v3gridn = v3grid[n];
double ***v4gridn = v4grid[n];
double ***v5gridn = v5grid[n];
int k = 0;
if (flag == REVERSE_RHO) {
double *dest = &qgridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++) {
dest[list[i]] += buf[k++];
}
} else if (flag == REVERSE_AD) {
double *dest = &egridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++)
dest[list[i]] += buf[k++];
} else if (flag == REVERSE_AD_PERATOM) {
double *v0src = &v0gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v1src = &v1gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v2src = &v2gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v3src = &v3gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v4src = &v4gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
double *v5src = &v5gridn[nzlo_out[n]][nylo_out[n]][nxlo_out[n]];
for (int i = 0; i < nlist; i++) {
v0src[list[i]] += buf[k++];
v1src[list[i]] += buf[k++];
v2src[list[i]] += buf[k++];
v3src[list[i]] += buf[k++];
v4src[list[i]] += buf[k++];
v5src[list[i]] += buf[k++];
}
}
}
/* ----------------------------------------------------------------------
interpolate from grid to get force on my particles
------------------------------------------------------------------------- */
void MSM::fieldforce()
{
//fprintf(screen,"MSM interpolation\n\n");
double ***egridn = egrid[0];
int i,l,m,n,nx,ny,nz,mx,my,mz;
double dx,dy,dz;
double phi_x,phi_y,phi_z;
double dphi_x,dphi_y,dphi_z;
double ekx,eky,ekz,etmp;
// loop over my charges, interpolate electric field from nearby grid points
// (nx,ny,nz) = global coords of grid pt to "lower left" of charge
// (dx,dy,dz) = distance to "lower left" grid pt
// (mx,my,mz) = global coords of moving stencil pt
// ek = 3 components of E-field on particle
double *q = atom->q;
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) {
nx = part2grid[i][0];
ny = part2grid[i][1];
nz = part2grid[i][2];
dx = nx - (x[i][0]-boxlo[0])*delxinv[0];
dy = ny - (x[i][1]-boxlo[1])*delyinv[0];
dz = nz - (x[i][2]-boxlo[2])*delzinv[0];
compute_phis_and_dphis(dx,dy,dz);
ekx = eky = ekz = 0.0;
for (n = nlower; n <= nupper; n++) {
mz = n+nz;
phi_z = phi1d[2][n];
dphi_z = dphi1d[2][n];
for (m = nlower; m <= nupper; m++) {
my = m+ny;
phi_y = phi1d[1][m];
dphi_y = dphi1d[1][m];
for (l = nlower; l <= nupper; l++) {
mx = l+nx;
phi_x = phi1d[0][l];
dphi_x = dphi1d[0][l];
etmp = egridn[mz][my][mx];
ekx += dphi_x*phi_y*phi_z*etmp;
eky += phi_x*dphi_y*phi_z*etmp;
ekz += phi_x*phi_y*dphi_z*etmp;
}
}
}
ekx *= delxinv[0];
eky *= delyinv[0];
ekz *= delzinv[0];
// effectively divide by length for a triclinic system
if (triclinic) {
double tmp[3];
tmp[0] = ekx;
tmp[1] = eky;
tmp[2] = ekz;
x2lamdaT(&tmp[0],&tmp[0]);
ekx = tmp[0];
eky = tmp[1];
ekz = tmp[2];
}
// convert E-field to force
const double qfactor = force->qqrd2e*scale*q[i];
f[i][0] += qfactor*ekx;
f[i][1] += qfactor*eky;
f[i][2] += qfactor*ekz;
}
}
/* ----------------------------------------------------------------------
interpolate from grid to get per-atom energy/virial
------------------------------------------------------------------------- */
void MSM::fieldforce_peratom()
{
int i,l,m,n,nx,ny,nz,mx,my,mz;
double dx,dy,dz,x0,y0,z0;
double u,v0,v1,v2,v3,v4,v5;
double ***egridn = egrid[0];
double ***v0gridn = v0grid[0];
double ***v1gridn = v1grid[0];
double ***v2gridn = v2grid[0];
double ***v3gridn = v3grid[0];
double ***v4gridn = v4grid[0];
double ***v5gridn = v5grid[0];
// loop over my charges, interpolate from nearby grid points
// (nx,ny,nz) = global coords of grid pt to "lower left" of charge
// (dx,dy,dz) = distance to "lower left" grid pt
// (mx,my,mz) = global coords of moving stencil pt
double *q = atom->q;
double **x = atom->x;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) {
nx = part2grid[i][0];
ny = part2grid[i][1];
nz = part2grid[i][2];
dx = nx - (x[i][0]-boxlo[0])*delxinv[0];
dy = ny - (x[i][1]-boxlo[1])*delyinv[0];
dz = nz - (x[i][2]-boxlo[2])*delzinv[0];
compute_phis_and_dphis(dx,dy,dz);
u = v0 = v1 = v2 = v3 = v4 = v5 = 0.0;
for (n = nlower; n <= nupper; n++) {
mz = n+nz;
z0 = phi1d[2][n];
for (m = nlower; m <= nupper; m++) {
my = m+ny;
y0 = z0*phi1d[1][m];
for (l = nlower; l <= nupper; l++) {
mx = l+nx;
x0 = y0*phi1d[0][l];
if (eflag_atom) u += x0*egridn[mz][my][mx];
if (vflag_atom) {
v0 += x0*v0gridn[mz][my][mx];
v1 += x0*v1gridn[mz][my][mx];
v2 += x0*v2gridn[mz][my][mx];
v3 += x0*v3gridn[mz][my][mx];
v4 += x0*v4gridn[mz][my][mx];
v5 += x0*v5gridn[mz][my][mx];
}
}
}
}
if (eflag_atom) eatom[i] += q[i]*u;
if (vflag_atom) {
vatom[i][0] += q[i]*v0;
vatom[i][1] += q[i]*v1;
vatom[i][2] += q[i]*v2;
vatom[i][3] += q[i]*v3;
vatom[i][4] += q[i]*v4;
vatom[i][5] += q[i]*v5;
}
}
}
/* ----------------------------------------------------------------------
charge assignment into phi1d (interpolation coefficients)
------------------------------------------------------------------------- */
void MSM::compute_phis(const double &dx, const double &dy,
const double &dz)
{
double delx,dely,delz;
for (int nu = nlower; nu <= nupper; nu++) {
delx = dx + double(nu);
dely = dy + double(nu);
delz = dz + double(nu);
phi1d[0][nu] = compute_phi(delx);
phi1d[1][nu] = compute_phi(dely);
phi1d[2][nu] = compute_phi(delz);
}
}
/* ----------------------------------------------------------------------
charge assignment into phi1d and dphi1d (interpolation coefficients)
------------------------------------------------------------------------- */
void MSM::compute_phis_and_dphis(const double &dx, const double &dy,
const double &dz)
{
double delx,dely,delz;
for (int nu = nlower; nu <= nupper; nu++) {
delx = dx + double(nu);
dely = dy + double(nu);
delz = dz + double(nu);
phi1d[0][nu] = compute_phi(delx);
phi1d[1][nu] = compute_phi(dely);
phi1d[2][nu] = compute_phi(delz);
dphi1d[0][nu] = compute_dphi(delx);
dphi1d[1][nu] = compute_dphi(dely);
dphi1d[2][nu] = compute_dphi(delz);
}
}
/* ----------------------------------------------------------------------
compute phi using interpolating polynomial
see Eq 7 from Parallel Computing 35 (2009) 164–177
and Hardy's thesis
------------------------------------------------------------------------- */
inline double MSM::compute_phi(const double &xi)
{
double phi;
double abs_xi = fabs(xi);
double xi2 = xi*xi;
if (order == 4) {
if (abs_xi <= 1) {
phi = (1.0 - abs_xi)*(1.0 + abs_xi - 1.5*xi2);
} else if (abs_xi <= 2) {
phi = -0.5*(abs_xi - 1.0)*(2.0 - abs_xi)*(2.0 - abs_xi);
} else {
phi = 0.0;
}
} else if (order == 6) {
if (abs_xi <= 1) {
phi = (1.0 - xi2)*(2.0 - abs_xi)*(6.0 + 3.0*abs_xi -
5.0*xi2)/12.0;
} else if (abs_xi <= 2) {
phi = -(abs_xi - 1.0)*(2.0 - abs_xi)*(3.0 - abs_xi)*
(4.0 + 9.0*abs_xi - 5.0*xi2)/24.0;
} else if (abs_xi <= 3) {
phi = (abs_xi - 1.0)*(abs_xi - 2.0)*(3.0 - abs_xi)*
(3.0 - abs_xi)*(4.0 - abs_xi)/24.0;
} else {
phi = 0.0;
}
} else if (order == 8) {
if (abs_xi <= 1) {
phi = (1.0 - xi2)*(4.0 - xi2)*(3.0 - abs_xi)*
(12.0 + 4.0*abs_xi - 7.0*xi2)/144.0;
} else if (abs_xi <= 2) {
phi = -(xi2 - 1.0)*(2.0 - abs_xi)*(3.0 - abs_xi)*
(4.0 - abs_xi)*(10.0 + 12.0*abs_xi - 7.0*xi2)/240.0;
} else if (abs_xi <= 3) {
phi = (abs_xi - 1.0)*(abs_xi - 2.0)*(3.0 - abs_xi)*(4.0 - abs_xi)*
(5.0 - abs_xi)*(6.0 + 20.0*abs_xi - 7.0*xi2)/720.0;
} else if (abs_xi <= 4) {
phi = -(abs_xi - 1.0)*(abs_xi - 2.0)*(abs_xi - 3.0)*(4.0 - abs_xi)*
(4.0 - abs_xi)*(5.0 - abs_xi)*(6.0 - abs_xi)/720.0;
} else {
phi = 0.0;
}
} else if (order == 10) {
if (abs_xi <= 1) {
phi = (1.0 - xi2)*(4.0 - xi2)*(9.0 - xi2)*
(4.0 - abs_xi)*(20.0 + 5.0*abs_xi - 9.0*xi2)/2880.0;
} else if (abs_xi <= 2) {
phi = -(xi2 - 1.0)*(4.0 - xi2)*(3.0 - abs_xi)*(4.0 - abs_xi)*
(5.0 - abs_xi)*(6.0 + 5.0*abs_xi - 3.0*xi2)/1440.0;
} else if (abs_xi <= 3) {
phi = (xi2 - 1.0)*(abs_xi - 2.0)*(3.0 - abs_xi)*(4.0 - abs_xi)*
(5.0 - abs_xi)*(6.0 - abs_xi)*(14.0 + 25.0*abs_xi - 9.0*xi2)/10080.0;
} else if (abs_xi <= 4) {
phi = -(abs_xi - 1.0)*(abs_xi - 2.0)*(abs_xi - 3.0)*(4.0 - abs_xi)*
(5.0 - abs_xi)*(6.0 - abs_xi)*(7.0 - abs_xi)*
(8.0 + 35.0*abs_xi - 9.0*xi2)/40320.0;
} else if (abs_xi <= 5) {
phi = (abs_xi - 1.0)*(abs_xi - 2.0)*(abs_xi - 3.0)*
(abs_xi - 4.0)*(5.0 - abs_xi)*(5.0 - abs_xi)*(6.0 - abs_xi)*
(7.0 - abs_xi)*(8.0 - abs_xi)/40320.0;
} else {
phi = 0.0;
}
}
return phi;
}
/* ----------------------------------------------------------------------
compute the derivative of phi
phi is an interpolating polynomial
see Eq 7 from Parallel Computing 35 (2009) 164–177
and Hardy's thesis
------------------------------------------------------------------------- */
inline double MSM::compute_dphi(const double &xi)
{
double dphi;
double abs_xi = fabs(xi);
if (order == 4) {
double xi2 = xi*xi;
double abs_xi2 = abs_xi*abs_xi;
if (abs_xi == 0.0) {
dphi = 0.0;
} else if (abs_xi <= 1) {
dphi = xi*(3*xi2 + 6*abs_xi2 - 10*abs_xi)/2.0/abs_xi;
} else if (abs_xi <= 2) {
dphi = xi*(2 - abs_xi)*(3*abs_xi - 4)/2.0/abs_xi;
} else {
dphi = 0.0;
}
} else if (order == 6) {
double xi2 = xi*xi;
double xi4 = xi2*xi2;
double abs_xi2 = abs_xi*abs_xi;
double abs_xi3 = abs_xi2*abs_xi;
double abs_xi4 = abs_xi2*abs_xi2;
if (abs_xi == 0.0) {
dphi = 0.0;
} else if (abs_xi <= 1) {
dphi = xi*(46*xi2*abs_xi - 20*xi2*abs_xi2 - 5*xi4 + 5*xi2 +
6*abs_xi3 + 10*abs_xi2 - 50*abs_xi)/12.0/abs_xi;
} else if (abs_xi <= 2) {
dphi = xi*(15*xi2*abs_xi2 - 60*xi2*abs_xi + 55*xi2 +
10*abs_xi4 - 96*abs_xi3 + 260*abs_xi2 - 210*abs_xi + 10)/
24.0/abs_xi;
} else if (abs_xi <= 3) {
dphi = -xi*(abs_xi - 3)*(5*abs_xi3 - 37*abs_xi2 +
84*abs_xi - 58)/24.0/abs_xi;
} else {
dphi = 0.0;
}
} else if (order == 8) {
double xi2 = xi*xi;
double xi4 = xi2*xi2;
double xi6 = xi4*xi2;
double abs_xi3 = xi2*abs_xi;
double abs_xi5 = xi4*abs_xi;
if (abs_xi == 0.0) {
dphi = 0.0;
} else if (abs_xi <= 1) {
dphi = xi*(49*xi6 - 175*xi4 + 84*xi2 - 150*abs_xi5 +
644*abs_xi3 - 560*abs_xi)/144.0/abs_xi;
} else if (abs_xi <= 2) {
dphi = xi*(-49*xi6 - 1365*xi4 + 756*xi2 +
450*abs_xi5 + 1260*abs_xi3 - 1260*abs_xi + 28)/240.0/abs_xi;
} else if (abs_xi <= 3) {
dphi = xi*(49*xi6 + 4445*xi4 + 17724*xi2 -
750*abs_xi5 - 12740*abs_xi3 - 9940*abs_xi + 756)/720.0/abs_xi;
} else if (abs_xi <= 4) {
dphi = -xi*(abs_xi - 4)*(7*abs_xi5 - 122*xi4 +
807*abs_xi3 - 2512*xi2 + 3644*abs_xi - 1944)/720.0/abs_xi;
} else {
dphi = 0.0;
}
} else if (order == 10) {
double xi2 = xi*xi;
double xi4 = xi2*xi2;
double xi6 = xi4*xi2;
double xi8 = xi6*xi2;
double abs_xi2 = abs_xi*abs_xi;
double abs_xi3 = abs_xi2*abs_xi;
double abs_xi4 = abs_xi2*abs_xi2;
double abs_xi5 = abs_xi4*abs_xi;
double abs_xi6 = abs_xi5*abs_xi;
double abs_xi7 = abs_xi6*abs_xi;
double abs_xi8 = abs_xi7*abs_xi;
if (abs_xi == 0.0) {
dphi = 0.0;
} else if (abs_xi <= 1) {
dphi = xi*(298*xi6*abs_xi - 72*xi6*abs_xi2 - 9*xi8 +
126*xi6 + 30*xi4*abs_xi3 + 756*xi4*abs_xi2 - 3644*xi4*abs_xi -
441*xi4 - 280*xi2*abs_xi3 - 1764*xi2*abs_xi2 + 12026*xi2*abs_xi +
324*xi2 + 490*abs_xi3 + 648*abs_xi2 - 10792*abs_xi)/2880.0/abs_xi;
} else if (abs_xi <= 2) {
dphi = xi*(9*xi6*abs_xi2 - 72*xi6*abs_xi + 141*xi6 +
18*xi4*abs_xi4 - 236*xi4*abs_xi3 + 963*xi4*abs_xi2 -
1046*xi4*abs_xi - 687*xi4 - 20*xi2*abs_xi5 + 156*xi2*abs_xi4 +
168*xi2*abs_xi3 - 3522*xi2*abs_xi2 + 6382*xi2*abs_xi + 474*xi2 +
50*abs_xi5 - 516*abs_xi4 + 1262*abs_xi3 + 1596*abs_xi2 -
6344*abs_xi + 72)/1440.0/abs_xi;
} else if (abs_xi <= 3) {
dphi = xi*(720*xi4*abs_xi3 - 45*xi4*abs_xi4 - 4185*xi4*abs_xi2 +
10440*xi4*abs_xi - 9396*xi4 - 36*xi2*abs_xi6 + 870*xi2*abs_xi5 -
7965*xi2*abs_xi4 + 34540*xi2*abs_xi3 - 70389*xi2*abs_xi2 +
51440*xi2*abs_xi + 6012*xi2 + 50*abs_xi7 - 954*abs_xi6 +
6680*abs_xi5 - 19440*abs_xi4 + 11140*abs_xi3 + 49014*abs_xi2 -
69080*abs_xi + 3384)/10080.0/abs_xi;
} else if (abs_xi <= 4) {
dphi = xi*(63*xi2*abs_xi6 - 1512*xi2*abs_xi5 + 14490*xi2*abs_xi4 -
70560*xi2*abs_xi3 + 182763*xi2*abs_xi2 - 236376*xi2*abs_xi +
117612*xi2 + 18*abs_xi8 - 784*abs_xi7 + 12600*abs_xi6 -
101556*abs_xi5 + 451962*abs_xi4 - 1121316*abs_xi3 +
1451628*abs_xi2 - 795368*abs_xi + 71856)/40320.0/abs_xi;
} else if (abs_xi <= 5) {
dphi = -xi*(abs_xi - 5)*(9*abs_xi7 - 283*abs_xi6 +
3667*abs_xi5 - 25261*abs_xi4 + 99340*abs_xi3 -
221416*abs_xi2 + 256552*abs_xi - 117648)/40320.0/abs_xi;
} else {
dphi = 0.0;
}
}
return dphi;
}
/* ----------------------------------------------------------------------
Compute direct interaction (energy) weights for intermediate grid levels
------------------------------------------------------------------------- */
void MSM::get_g_direct()
{
if (g_direct) memory->destroy(g_direct);
memory->create(g_direct,levels,nmax_direct,"msm:g_direct");
double a = cutoff;
int n,zk,zyk,k,ix,iy,iz;
double xdiff,ydiff,zdiff;
double dx,dy,dz;
double tmp[3];
double rsq,rho,two_n;
two_n = 1.0;
int nx = nxhi_direct - nxlo_direct + 1;
int ny = nyhi_direct - nylo_direct + 1;
for (n=0; n<levels; n++) {
for (iz = nzlo_direct; iz <= nzhi_direct; iz++) {
zdiff = iz/delzinv[n];
zk = (iz + nzhi_direct)*ny;
for (iy = nylo_direct; iy <= nyhi_direct; iy++) {
ydiff = iy/delyinv[n];
zyk = (zk + iy + nyhi_direct)*nx;
for (ix = nxlo_direct; ix <= nxhi_direct; ix++) {
xdiff = ix/delxinv[n];
// transform grid point pair-wise distance from lamda (0-1) coords to box coords
if (triclinic) {
tmp[0] = xdiff;
tmp[1] = ydiff;
tmp[2] = zdiff;
lamda2xvector(&tmp[0],&tmp[0]);
dx = tmp[0];
dy = tmp[1];
dz = tmp[2];
} else {
dx = xdiff;
dy = ydiff;
dz = zdiff;
}
rsq = dx*dx + dy*dy + dz*dz;
rho = sqrt(rsq)/(two_n*a);
k = zyk + ix + nxhi_direct;
g_direct[n][k] = gamma(rho)/(two_n*a) - gamma(rho/2.0)/(2.0*two_n*a);
}
}
}
two_n *= 2.0;
}
}
/* ----------------------------------------------------------------------
Compute direct interaction (virial) weights for intermediate grid levels
------------------------------------------------------------------------- */
void MSM::get_virial_direct()
{
if (v0_direct) memory->destroy(v0_direct);
memory->create(v0_direct,levels,nmax_direct,"msm:v0_direct");
if (v1_direct) memory->destroy(v1_direct);
memory->create(v1_direct,levels,nmax_direct,"msm:v1_direct");
if (v2_direct) memory->destroy(v2_direct);
memory->create(v2_direct,levels,nmax_direct,"msm:v2_direct");
if (v3_direct) memory->destroy(v3_direct);
memory->create(v3_direct,levels,nmax_direct,"msm:v3_direct");
if (v4_direct) memory->destroy(v4_direct);
memory->create(v4_direct,levels,nmax_direct,"msm:v4_direct");
if (v5_direct) memory->destroy(v5_direct);
memory->create(v5_direct,levels,nmax_direct,"msm:v5_direct");
double a = cutoff;
double a_sq = cutoff*cutoff;
int n,zk,zyk,k,ix,iy,iz;
double xdiff,ydiff,zdiff;
double dx,dy,dz;
double tmp[3];
double rsq,r,rho,two_n,two_nsq,dg;
two_n = 1.0;
int nx = nxhi_direct - nxlo_direct + 1;
int ny = nyhi_direct - nylo_direct + 1;
for (n=0; n<levels; n++) {
two_nsq = two_n * two_n;
for (iz = nzlo_direct; iz <= nzhi_direct; iz++) {
zdiff = iz/delzinv[n];
zk = (iz + nzhi_direct)*ny;
for (iy = nylo_direct; iy <= nyhi_direct; iy++) {
ydiff = iy/delyinv[n];
zyk = (zk + iy + nyhi_direct)*nx;
for (ix = nxlo_direct; ix <= nxhi_direct; ix++) {
xdiff = ix/delxinv[n];
if (triclinic) {
tmp[0] = xdiff;
tmp[1] = ydiff;
tmp[2] = zdiff;
lamda2xvector(&tmp[0],&tmp[0]);
dx = tmp[0];
dy = tmp[1];
dz = tmp[2];
} else {
dx = xdiff;
dy = ydiff;
dz = zdiff;
}
rsq = dx*dx + dy*dy + dz*dz;
k = zyk + ix + nxhi_direct;
r = sqrt(rsq);
if (r == 0) {
v0_direct[n][k] = 0.0;
v1_direct[n][k] = 0.0;
v2_direct[n][k] = 0.0;
v3_direct[n][k] = 0.0;
v4_direct[n][k] = 0.0;
v5_direct[n][k] = 0.0;
} else {
rho = r/(two_n*a);
dg = -(dgamma(rho)/(two_nsq*a_sq) -
dgamma(rho/2.0)/(4.0*two_nsq*a_sq))/r;
v0_direct[n][k] = dg * dx * dx;
v1_direct[n][k] = dg * dy * dy;
v2_direct[n][k] = dg * dz * dz;
v3_direct[n][k] = dg * dx * dy;
v4_direct[n][k] = dg * dx * dz;
v5_direct[n][k] = dg * dy * dz;
}
}
}
}
two_n *= 2.0;
}
}
/* ----------------------------------------------------------------------
Compute direct interaction (energy) weights for top grid level
(nonperiodic systems only)
------------------------------------------------------------------------- */
void MSM::get_g_direct_top(int n)
{
int nx_top = betax[n] - alpha[n];
int ny_top = betay[n] - alpha[n];
int nz_top = betaz[n] - alpha[n];
int nx = 2*nx_top + 1;
int ny = 2*ny_top + 1;
int nz = 2*nz_top + 1;
int nmax_top = 8*(nx+1)*(ny*1)*(nz+1);
if (g_direct_top) memory->destroy(g_direct_top);
memory->create(g_direct_top,nmax_top,"msm:g_direct_top");
double a = cutoff;
int zk,zyk,k,ix,iy,iz;
double xdiff,ydiff,zdiff;
double dx,dy,dz;
double tmp[3];
double rsq,rho,two_n;
two_n = pow(2.0,n);
for (iz = -nz_top; iz <= nz_top; iz++) {
zdiff = iz/delzinv[n];
zk = (iz + nz_top)*ny;
for (iy = -ny_top; iy <= ny_top; iy++) {
ydiff = iy/delyinv[n];
zyk = (zk + iy + ny_top)*nx;
for (ix = -nx_top; ix <= nx_top; ix++) {
xdiff = ix/delxinv[n];
if (triclinic) {
tmp[0] = xdiff;
tmp[1] = ydiff;
tmp[2] = zdiff;
lamda2xvector(&tmp[0],&tmp[0]);
dx = tmp[0];
dy = tmp[1];
dz = tmp[2];
} else {
dx = xdiff;
dy = ydiff;
dz = zdiff;
}
rsq = dx*dx + dy*dy + dz*dz;
rho = sqrt(rsq)/(two_n*a);
k = zyk + ix + nx_top;
g_direct_top[k] = gamma(rho)/(two_n*a);
}
}
}
}
/* ----------------------------------------------------------------------
Compute direct interaction (virial) weights for top grid level
(nonperiodic systems only)
------------------------------------------------------------------------- */
void MSM::get_virial_direct_top(int n)
{
int nx_top = betax[n] - alpha[n];
int ny_top = betay[n] - alpha[n];
int nz_top = betaz[n] - alpha[n];
int nx = 2*nx_top + 1;
int ny = 2*ny_top + 1;
int nz = 2*nz_top + 1;
int nmax_top = 8*(nx+1)*(ny*1)*(nz+1);
if (v0_direct_top) memory->destroy(v0_direct_top);
memory->create(v0_direct_top,nmax_top,"msm:v0_direct_top");
if (v1_direct_top) memory->destroy(v1_direct_top);
memory->create(v1_direct_top,nmax_top,"msm:v1_direct_top");
if (v2_direct_top) memory->destroy(v2_direct_top);
memory->create(v2_direct_top,nmax_top,"msm:v2_direct_top");
if (v3_direct_top) memory->destroy(v3_direct_top);
memory->create(v3_direct_top,nmax_top,"msm:v3_direct_top");
if (v4_direct_top) memory->destroy(v4_direct_top);
memory->create(v4_direct_top,nmax_top,"msm:v4_direct_top");
if (v5_direct_top) memory->destroy(v5_direct_top);
memory->create(v5_direct_top,nmax_top,"msm:v5_direct_top");
double a = cutoff;
double a_sq = cutoff*cutoff;
int zk,zyk,k,ix,iy,iz;
double xdiff,ydiff,zdiff;
double dx,dy,dz;
double tmp[3];
double rsq,r,rho,two_n,two_nsq,dg;
two_n = pow(2.0,n);
two_nsq = two_n * two_n;
for (iz = -nz_top; iz <= nz_top; iz++) {
zdiff = iz/delzinv[n];
zk = (iz + nz_top)*ny;
for (iy = -ny_top; iy <= ny_top; iy++) {
ydiff = iy/delyinv[n];
zyk = (zk + iy + ny_top)*nx;
for (ix = -nx_top; ix <= nx_top; ix++) {
xdiff = ix/delxinv[n];
if (triclinic) {
tmp[0] = xdiff;
tmp[1] = ydiff;
tmp[2] = zdiff;
lamda2xvector(&tmp[0],&tmp[0]);
dx = tmp[0];
dy = tmp[1];
dz = tmp[2];
} else {
dx = xdiff;
dy = ydiff;
dz = zdiff;
}
rsq = dx*dx + dy*dy + dz*dz;
k = zyk + ix + nx_top;
r = sqrt(rsq);
if (r == 0) {
v0_direct_top[k] = 0.0;
v1_direct_top[k] = 0.0;
v2_direct_top[k] = 0.0;
v3_direct_top[k] = 0.0;
v4_direct_top[k] = 0.0;
v5_direct_top[k] = 0.0;
} else {
rho = r/(two_n*a);
dg = -(dgamma(rho)/(two_nsq*a_sq))/r;
v0_direct_top[k] = dg * dx * dx;
v1_direct_top[k] = dg * dy * dy;
v2_direct_top[k] = dg * dz * dz;
v3_direct_top[k] = dg * dx * dy;
v4_direct_top[k] = dg * dx * dz;
v5_direct_top[k] = dg * dy * dz;
}
}
}
}
}

Event Timeline