Page MenuHomec4science

npair_half_bin_newton_tri_intel.cpp
No OneTemporary

File Metadata

Created
Sat, Jun 29, 05:59

npair_half_bin_newton_tri_intel.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: W. Michael Brown (Intel)
------------------------------------------------------------------------- */
#include "npair_half_bin_newton_tri_intel.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "atom.h"
#include "comm.h"
#include "group.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
NPairHalfBinNewtonTriIntel::NPairHalfBinNewtonTriIntel(LAMMPS *lmp) :
NPairIntel(lmp) {}
/* ----------------------------------------------------------------------
binned neighbor list construction with Newton's 3rd law for triclinic
each owned atom i checks its own bin and other bins in triclinic stencil
every pair stored exactly once by some processor
------------------------------------------------------------------------- */
void NPairHalfBinNewtonTriIntel::build(NeighList *list)
{
if (nstencil > INTEL_MAX_STENCIL)
error->all(FLERR, "Too many neighbor bins for USER-INTEL package.");
#ifdef _LMP_INTEL_OFFLOAD
if (exclude)
error->all(FLERR, "Exclusion lists not yet supported for Intel offload");
#endif
if (_fix->precision() == FixIntel::PREC_MODE_MIXED)
hbnti(list, _fix->get_mixed_buffers());
else if (_fix->precision() == FixIntel::PREC_MODE_DOUBLE)
hbnti(list, _fix->get_double_buffers());
else
hbnti(list, _fix->get_single_buffers());
_fix->stop_watch(TIME_HOST_NEIGHBOR);
}
template <class flt_t, class acc_t>
void NPairHalfBinNewtonTriIntel::
hbnti(NeighList *list, IntelBuffers<flt_t,acc_t> *buffers) {
const int nlocal = (includegroup) ? atom->nfirst : atom->nlocal;
list->inum = nlocal;
int host_start = _fix->host_start_neighbor();
const int off_end = _fix->offload_end_neighbor();
#ifdef _LMP_INTEL_OFFLOAD
if (off_end) grow_stencil();
if (_fix->full_host_list()) host_start = 0;
int offload_noghost = _fix->offload_noghost();
#endif
buffers->grow_list(list, atom->nlocal, comm->nthreads, off_end);
int need_ic = 0;
if (atom->molecular)
dminimum_image_check(need_ic, neighbor->cutneighmax, neighbor->cutneighmax,
neighbor->cutneighmax);
#ifdef _LMP_INTEL_OFFLOAD
if (need_ic) {
if (offload_noghost) {
hbnti<flt_t,acc_t,1,1>(1, list, buffers, 0, off_end);
hbnti<flt_t,acc_t,1,1>(0, list, buffers, host_start, nlocal, off_end);
} else {
hbnti<flt_t,acc_t,0,1>(1, list, buffers, 0, off_end);
hbnti<flt_t,acc_t,0,1>(0, list, buffers, host_start, nlocal);
}
} else {
if (offload_noghost) {
hbnti<flt_t,acc_t,1,0>(1, list, buffers, 0, off_end);
hbnti<flt_t,acc_t,1,0>(0, list, buffers, host_start, nlocal, off_end);
} else {
hbnti<flt_t,acc_t,0,0>(1, list, buffers, 0, off_end);
hbnti<flt_t,acc_t,0,0>(0, list, buffers, host_start, nlocal);
}
}
#else
if (need_ic)
hbnti<flt_t,acc_t,0,1>(0, list, buffers, host_start, nlocal);
else
hbnti<flt_t,acc_t,0,0>(0, list, buffers, host_start, nlocal);
#endif
}
template <class flt_t, class acc_t, int offload_noghost, int need_ic>
void NPairHalfBinNewtonTriIntel::
hbnti(const int offload, NeighList *list, IntelBuffers<flt_t,acc_t> *buffers,
const int astart, const int aend, const int offload_end) {
if (aend-astart == 0) return;
const int nall = atom->nlocal + atom->nghost;
int pad = 1;
int nall_t = nall;
#ifdef _LMP_INTEL_OFFLOAD
if (offload_noghost && offload) nall_t = atom->nlocal;
if (offload) {
if (INTEL_MIC_NBOR_PAD > 1)
pad = INTEL_MIC_NBOR_PAD * sizeof(float) / sizeof(flt_t);
} else
#endif
if (INTEL_NBOR_PAD > 1)
pad = INTEL_NBOR_PAD * sizeof(float) / sizeof(flt_t);
const int pad_width = pad;
const ATOM_T * _noalias const x = buffers->get_x();
int * _noalias const firstneigh = buffers->firstneigh(list);
const int e_nall = nall_t;
const int molecular = atom->molecular;
int *ns = NULL;
tagint *s = NULL;
int tag_size = 0, special_size;
if (buffers->need_tag()) tag_size = e_nall;
if (molecular) {
s = atom->special[0];
ns = atom->nspecial[0];
special_size = aend;
} else {
s = &buffers->_special_holder;
ns = &buffers->_nspecial_holder;
special_size = 0;
}
const tagint * _noalias const special = s;
const int * _noalias const nspecial = ns;
const int maxspecial = atom->maxspecial;
const tagint * _noalias const tag = atom->tag;
int * _noalias const ilist = list->ilist;
int * _noalias numneigh = list->numneigh;
int * _noalias const cnumneigh = buffers->cnumneigh(list);
const int nstencil = this->nstencil;
const int * _noalias const stencil = this->stencil;
const flt_t * _noalias const cutneighsq = buffers->get_cutneighsq()[0];
const int ntypes = atom->ntypes + 1;
const int nlocal = atom->nlocal;
#ifndef _LMP_INTEL_OFFLOAD
int * const mask = atom->mask;
tagint * const molecule = atom->molecule;
#endif
int tnum;
int *overflow;
double *timer_compute;
#ifdef _LMP_INTEL_OFFLOAD
if (offload) {
timer_compute = _fix->off_watch_neighbor();
tnum = buffers->get_off_threads();
overflow = _fix->get_off_overflow_flag();
_fix->stop_watch(TIME_HOST_NEIGHBOR);
_fix->start_watch(TIME_OFFLOAD_LATENCY);
} else
#endif
{
tnum = comm->nthreads;
overflow = _fix->get_overflow_flag();
}
const int nthreads = tnum;
const int maxnbors = buffers->get_max_nbors();
int * _noalias const atombin = buffers->get_atombin();
const int * _noalias const binpacked = buffers->get_binpacked();
const int xperiodic = domain->xperiodic;
const int yperiodic = domain->yperiodic;
const int zperiodic = domain->zperiodic;
const flt_t xprd_half = domain->xprd_half;
const flt_t yprd_half = domain->yprd_half;
const flt_t zprd_half = domain->zprd_half;
#ifdef _LMP_INTEL_OFFLOAD
const int * _noalias const binhead = this->binhead;
const int * _noalias const bins = this->bins;
const int cop = _fix->coprocessor_number();
const int separate_buffers = _fix->separate_buffers();
#pragma offload target(mic:cop) if(offload) \
in(x:length(e_nall+1) alloc_if(0) free_if(0)) \
in(tag:length(tag_size) alloc_if(0) free_if(0)) \
in(special:length(special_size*maxspecial) alloc_if(0) free_if(0)) \
in(nspecial:length(special_size*3) alloc_if(0) free_if(0)) \
in(bins,binpacked:length(nall) alloc_if(0) free_if(0)) \
in(binhead:length(mbins+1) alloc_if(0) free_if(0)) \
in(cutneighsq:length(0) alloc_if(0) free_if(0)) \
in(firstneigh:length(0) alloc_if(0) free_if(0)) \
in(cnumneigh:length(0) alloc_if(0) free_if(0)) \
out(numneigh:length(0) alloc_if(0) free_if(0)) \
in(ilist:length(0) alloc_if(0) free_if(0)) \
in(atombin:length(aend) alloc_if(0) free_if(0)) \
in(stencil:length(nstencil) alloc_if(0) free_if(0)) \
in(maxnbors,nthreads,maxspecial,nstencil,offload_end,pad_width,e_nall) \
in(offload,separate_buffers, astart, aend, nlocal, molecular, ntypes) \
in(xperiodic, yperiodic, zperiodic, xprd_half, yprd_half, zprd_half) \
out(overflow:length(5) alloc_if(0) free_if(0)) \
out(timer_compute:length(1) alloc_if(0) free_if(0)) \
signal(tag)
#endif
{
#if defined(__MIC__) && defined(_LMP_INTEL_OFFLOAD)
*timer_compute = MIC_Wtime();
#endif
#ifdef _LMP_INTEL_OFFLOAD
overflow[LMP_LOCAL_MIN] = astart;
overflow[LMP_LOCAL_MAX] = aend - 1;
overflow[LMP_GHOST_MIN] = e_nall;
overflow[LMP_GHOST_MAX] = -1;
#endif
int nstencilp = 0;
int binstart[INTEL_MAX_STENCIL], binend[INTEL_MAX_STENCIL];
for (int k = 0; k < nstencil; k++) {
binstart[nstencilp] = stencil[k];
int end = stencil[k] + 1;
for (int kk = k + 1; kk < nstencil; kk++) {
if (stencil[kk-1]+1 == stencil[kk]) {
end++;
k++;
} else break;
}
binend[nstencilp] = end;
nstencilp++;
}
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(numneigh, overflow, nstencilp, binstart, binend)
#endif
{
#ifdef _LMP_INTEL_OFFLOAD
int lmin = e_nall, lmax = -1, gmin = e_nall, gmax = -1;
#endif
const int num = aend - astart;
int tid, ifrom, ito;
IP_PRE_omp_range_id(ifrom, ito, tid, num, nthreads);
ifrom += astart;
ito += astart;
int which;
const int list_size = (ito + tid * 2 + 2) * maxnbors;
int ct = (ifrom + tid * 2) * maxnbors;
int *neighptr = firstneigh + ct;
const int obound = maxnbors * 3;
for (int i = ifrom; i < ito; i++) {
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
const int itype = x[i].w;
const int ioffset = ntypes * itype;
// loop over all atoms in bins in stencil
// pairs for atoms j "below" i are excluded
// below = lower z or (equal z and lower y) or (equal zy and lower x)
// (equal zyx and j <= i)
// latter excludes self-self interaction but allows superposed atoms
const int ibin = atombin[i];
int raw_count = maxnbors;
for (int k = 0; k < nstencilp; k++) {
const int bstart = binhead[ibin + binstart[k]];
const int bend = binhead[ibin + binend[k]];
for (int jj = bstart; jj < bend; jj++) {
const int j = binpacked[jj];
#ifdef _LMP_INTEL_OFFLOAD
if (offload_noghost) {
if (j < nlocal) {
if (i < offload_end) continue;
} else if (offload) continue;
}
#endif
if (x[j].z < ztmp) continue;
if (x[j].z == ztmp) {
if (x[j].y < ytmp) continue;
if (x[j].y == ytmp) {
if (x[j].x < xtmp) continue;
if (x[j].x == xtmp && j <= i) continue;
}
}
#ifndef _LMP_INTEL_OFFLOAD
if (exclude) {
const int jtype = x[j].w;
if (exclusion(i,j,itype,jtype,mask,molecule)) continue;
}
#endif
neighptr[raw_count++] = j;
}
}
if (raw_count > obound)
*overflow = 1;
#if defined(LMP_SIMD_COMPILER)
#ifdef _LMP_INTEL_OFFLOAD
int vlmin = lmin, vlmax = lmax, vgmin = gmin, vgmax = gmax;
#if __INTEL_COMPILER+0 > 1499
#pragma vector aligned
#pragma simd reduction(max:vlmax,vgmax) reduction(min:vlmin, vgmin)
#endif
#else
#pragma vector aligned
#pragma simd
#endif
#endif
for (int u = maxnbors; u < raw_count; u++) {
int j = neighptr[u];
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const int jtype = x[j].w;
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq > cutneighsq[ioffset + jtype])
neighptr[u] = e_nall;
else {
if (need_ic) {
int no_special;
ominimum_image_check(no_special, delx, dely, delz);
if (no_special)
neighptr[u] = -j - 1;
}
#ifdef _LMP_INTEL_OFFLOAD
if (j < nlocal) {
if (j < vlmin) vlmin = j;
if (j > vlmax) vlmax = j;
} else {
if (j < vgmin) vgmin = j;
if (j > vgmax) vgmax = j;
}
#endif
}
}
int n = 0, n2 = maxnbors;
for (int u = maxnbors; u < raw_count; u++) {
const int j = neighptr[u];
int pj = j;
if (pj < e_nall) {
if (need_ic)
if (pj < 0) pj = -pj - 1;
if (pj < nlocal)
neighptr[n++] = j;
else
neighptr[n2++] = j;
}
}
int ns = n;
for (int u = maxnbors; u < n2; u++)
neighptr[n++] = neighptr[u];
ilist[i] = i;
cnumneigh[i] = ct;
ns += n2 - maxnbors;
int edge = (ns % pad_width);
if (edge) {
const int pad_end = ns + (pad_width - edge);
#if defined(LMP_SIMD_COMPILER)
#pragma loop_count min=1, max=15, avg=8
#endif
for ( ; ns < pad_end; ns++)
neighptr[ns] = e_nall;
}
numneigh[i] = ns;
ct += ns;
const int alignb = (INTEL_DATA_ALIGN / sizeof(int));
edge = (ct % alignb);
if (edge) ct += alignb - edge;
neighptr = firstneigh + ct;
if (ct + obound > list_size) {
if (i < ito - 1) {
*overflow = 1;
ct = (ifrom + tid * 2) * maxnbors;
}
}
}
if (*overflow == 1)
for (int i = ifrom; i < ito; i++)
numneigh[i] = 0;
#ifdef _LMP_INTEL_OFFLOAD
if (separate_buffers) {
#if defined(_OPENMP)
#pragma omp critical
#endif
{
if (lmin < overflow[LMP_LOCAL_MIN]) overflow[LMP_LOCAL_MIN] = lmin;
if (lmax > overflow[LMP_LOCAL_MAX]) overflow[LMP_LOCAL_MAX] = lmax;
if (gmin < overflow[LMP_GHOST_MIN]) overflow[LMP_GHOST_MIN] = gmin;
if (gmax > overflow[LMP_GHOST_MAX]) overflow[LMP_GHOST_MAX] = gmax;
}
#pragma omp barrier
}
int ghost_offset = 0, nall_offset = e_nall;
if (separate_buffers) {
int nghost = overflow[LMP_GHOST_MAX] + 1 - overflow[LMP_GHOST_MIN];
if (nghost < 0) nghost = 0;
if (offload) {
ghost_offset = overflow[LMP_GHOST_MIN] - overflow[LMP_LOCAL_MAX] - 1;
nall_offset = overflow[LMP_LOCAL_MAX] + 1 + nghost;
} else {
ghost_offset = overflow[LMP_GHOST_MIN] - nlocal;
nall_offset = nlocal + nghost;
}
}
#endif
if (molecular) {
for (int i = ifrom; i < ito; ++i) {
int * _noalias jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd
#endif
for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj];
if (need_ic && j < 0) {
which = 0;
jlist[jj] = -j - 1;
} else
ofind_special(which, special, nspecial, i, tag[j]);
#ifdef _LMP_INTEL_OFFLOAD
if (j >= nlocal) {
if (j == e_nall)
jlist[jj] = nall_offset;
else if (which)
jlist[jj] = (j-ghost_offset) ^ (which << SBBITS);
else jlist[jj]-=ghost_offset;
} else
#endif
if (which) jlist[jj] = j ^ (which << SBBITS);
}
}
}
#ifdef _LMP_INTEL_OFFLOAD
else if (separate_buffers) {
for (int i = ifrom; i < ito; ++i) {
int * _noalias jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
int jj = 0;
for (jj = 0; jj < jnum; jj++)
if (jlist[jj] >= nlocal) break;
while (jj < jnum) {
if (jlist[jj] == e_nall) jlist[jj] = nall_offset;
else jlist[jj] -= ghost_offset;
jj++;
}
}
}
#endif
} // end omp
#if defined(__MIC__) && defined(_LMP_INTEL_OFFLOAD)
*timer_compute = MIC_Wtime() - *timer_compute;
#endif
} // end offload
#ifdef _LMP_INTEL_OFFLOAD
if (offload) {
_fix->stop_watch(TIME_OFFLOAD_LATENCY);
_fix->start_watch(TIME_HOST_NEIGHBOR);
for (int n = 0; n < aend; n++) {
ilist[n] = n;
numneigh[n] = 0;
}
} else {
for (int i = astart; i < aend; i++)
list->firstneigh[i] = firstneigh + cnumneigh[i];
if (separate_buffers) {
_fix->start_watch(TIME_PACK);
_fix->set_neighbor_host_sizes();
buffers->pack_sep_from_single(_fix->host_min_local(),
_fix->host_used_local(),
_fix->host_min_ghost(),
_fix->host_used_ghost());
_fix->stop_watch(TIME_PACK);
}
}
#else
for (int i = astart; i < aend; i++)
list->firstneigh[i] = firstneigh + cnumneigh[i];
#endif
}

Event Timeline