Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91374400
manifold_thylakoid_shared.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 11:46
Size
6 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 11:46 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22081720
Attached To
rLAMMPS lammps
manifold_thylakoid_shared.cpp
View Options
#include "manifold_thylakoid_shared.h"
#include <math.h>
using
namespace
LAMMPS_NS
;
using
namespace
user_manifold
;
thyla_part
::
thyla_part
(
int
type
,
double
*
args
,
double
xlo
,
double
ylo
,
double
zlo
,
double
xhi
,
double
yhi
,
double
zhi
)
:
type
(
type
),
xlo
(
xlo
),
xhi
(
xhi
),
ylo
(
ylo
),
yhi
(
yhi
),
zlo
(
zlo
),
zhi
(
zhi
)
{
switch
(
type
){
case
THYLA_TYPE_PLANE:
// a*(x-x0) + b*(y-y0) + c*(z-z0) = 0
params
[
0
]
=
args
[
0
];
// a
params
[
1
]
=
args
[
1
];
// b
params
[
2
]
=
args
[
2
];
// c
params
[
3
]
=
args
[
3
];
// x0
params
[
4
]
=
args
[
4
];
// y0
params
[
5
]
=
args
[
5
];
// z0
break
;
case
THYLA_TYPE_SPHERE:
// (x-x0)^2 + (y-y0)^2 + (z-z0)^2 - R^2 = 0
params
[
0
]
=
args
[
0
];
// R
params
[
1
]
=
args
[
1
];
// x0
params
[
2
]
=
args
[
2
];
// y0
params
[
3
]
=
args
[
3
];
// z0
break
;
case
THYLA_TYPE_CYL:
// a*(x-x0)^2 + b*(y-y0)^2 + c*(z-z0)^2 - R^2 = 0
params
[
0
]
=
args
[
0
];
// a
params
[
1
]
=
args
[
1
];
// b
params
[
2
]
=
args
[
2
];
// c
params
[
3
]
=
args
[
3
];
// x0
params
[
4
]
=
args
[
4
];
// y0
params
[
5
]
=
args
[
5
];
// z0
params
[
6
]
=
args
[
6
];
// R
if
(
(
args
[
0
]
!=
0.0
)
&&
(
args
[
1
]
!=
0.0
)
&&
(
args
[
2
]
!=
0.0
)
){
err_flag
=
-
1
;
return
;
}
// The others should be 1.
if
(
(
args
[
0
]
!=
1.0
)
&&
(
args
[
0
]
!=
0.0
)
&&
(
args
[
1
]
!=
1.0
)
&&
(
args
[
1
]
!=
0.0
)
&&
(
args
[
2
]
!=
1.0
)
&&
(
args
[
2
]
!=
0.0
)
){
err_flag
=
-
1
;
}
break
;
case
THYLA_TYPE_CYL_TO_PLANE:
/*
* Funky bit that connects a cylinder to a plane.
* It is what you get by rotating the equation
* r(x) = R0 + R*( 1 - sqrt( 1 - ( ( X0 - x ) /R )^2 ) ) around the x-axis.
* I kid you not.
*
* The shape is symmetric so you have to set whether it is the "left" or
* "right" end by truncating it properly. It is designed to run from
* X0 to X0 + R if "right" or X0 - R to X0 if "left".
*
* As params it takes X0, R0, R, and a sign that determines whether it is
* "left" (args[3] < 0) or "right" (args[3] > 0).
*
* The args are: X0, R0, R, x0, y0, z0, sign.
*/
params
[
0
]
=
args
[
0
];
params
[
1
]
=
args
[
1
];
params
[
2
]
=
args
[
2
];
params
[
3
]
=
args
[
3
];
params
[
4
]
=
args
[
4
];
params
[
5
]
=
args
[
5
];
params
[
6
]
=
args
[
6
];
break
;
default
:
err_flag
=
-
1
;
}
x0
=
(
type
==
THYLA_TYPE_SPHERE
)
?
params
[
1
]
:
params
[
3
];
y0
=
(
type
==
THYLA_TYPE_SPHERE
)
?
params
[
2
]
:
params
[
4
];
z0
=
(
type
==
THYLA_TYPE_SPHERE
)
?
params
[
3
]
:
params
[
5
];
}
thyla_part
::~
thyla_part
()
{}
double
thyla_part
::
g
(
const
double
*
x
)
{
switch
(
type
){
case
THYLA_TYPE_PLANE:
{
// a*(x-x0) + b*(y-y0) + c*(z-z0) = 0
double
a
=
params
[
0
];
double
b
=
params
[
1
];
double
c
=
params
[
2
];
double
dx
=
x
[
0
]
-
params
[
3
];
double
dy
=
x
[
1
]
-
params
[
4
];
double
dz
=
x
[
2
]
-
params
[
5
];
return
a
*
dx
+
b
*
dy
+
c
*
dz
;
break
;
}
case
THYLA_TYPE_SPHERE:
{
// (x-x0)^2 + (y-y0)^2 + (z-z0)^2 - R^2 = 0
double
R2
=
params
[
0
]
*
params
[
0
];
double
dx
=
x
[
0
]
-
params
[
1
];
double
dy
=
x
[
1
]
-
params
[
2
];
double
dz
=
x
[
2
]
-
params
[
3
];
return
dx
*
dx
+
dy
*
dy
+
dz
*
dz
-
R2
;
break
;
}
case
THYLA_TYPE_CYL:
{
// a*(x-x0)^2 + b*(y-y0)^2 + c*(z-z0)^2 - R^2 = 0
double
a
=
params
[
0
];
double
b
=
params
[
1
];
double
c
=
params
[
2
];
double
X0
=
params
[
3
];
double
Y0
=
params
[
4
];
double
Z0
=
params
[
5
];
double
R
=
params
[
6
];
double
dx
=
x
[
0
]
-
X0
;
double
dy
=
x
[
1
]
-
Y0
;
double
dz
=
x
[
2
]
-
Z0
;
return
a
*
dx
*
dx
+
b
*
dy
*
dy
+
c
*
dz
*
dz
-
R
*
R
;
break
;
}
case
THYLA_TYPE_CYL_TO_PLANE:
{
double
X0
=
params
[
0
];
double
R0
=
params
[
1
];
double
R
=
params
[
2
];
// Determine the centre of the sphere.
double
dx
=
(
x
[
0
]
-
X0
);
double
dyz
=
sqrt
(
x
[
1
]
*
x
[
1
]
+
x
[
2
]
*
x
[
2
]
);
double
rdyz
=
dyz
-
(
R0
+
R
);
double
norm
=
1.0
/
(
2.0
*
R
);
// Maybe sign is important here...
double
g
=
norm
*
(
dx
*
dx
+
rdyz
*
rdyz
-
R
*
R
);
return
g
;
}
default
:
err_flag
=
-
1
;
return
0
;
// Mostly to get rid of compiler werrors.
break
;
}
}
void
thyla_part
::
n
(
const
double
*
x
,
double
*
n
)
{
switch
(
type
){
case
THYLA_TYPE_PLANE:
{
// a*(x-x0) + b*(y-y0) + c*(z-z0) = 0
double
a
=
params
[
0
];
double
b
=
params
[
1
];
double
c
=
params
[
2
];
n
[
0
]
=
a
;
n
[
1
]
=
b
;
n
[
2
]
=
c
;
break
;
}
case
THYLA_TYPE_SPHERE:
{
// (x-x0)^2 + (y-y0)^2 + (z-z0)^2 - R^2 = 0
double
dx
=
x
[
0
]
-
params
[
1
];
double
dy
=
x
[
1
]
-
params
[
2
];
double
dz
=
x
[
2
]
-
params
[
3
];
n
[
0
]
=
2
*
dx
;
n
[
1
]
=
2
*
dy
;
n
[
2
]
=
2
*
dz
;
break
;
}
case
THYLA_TYPE_CYL:
{
// a*(x-x0)^2 + b*(y-y0)^2 + c*(z-z0)^2 - R^2 = 0
double
a
=
params
[
0
];
double
b
=
params
[
1
];
double
c
=
params
[
2
];
double
X0
=
params
[
3
];
double
Y0
=
params
[
4
];
double
Z0
=
params
[
5
];
double
dx
=
x
[
0
]
-
X0
;
double
dy
=
x
[
1
]
-
Y0
;
double
dz
=
x
[
2
]
-
Z0
;
n
[
0
]
=
2
*
a
*
dx
;
n
[
1
]
=
2
*
b
*
dy
;
n
[
2
]
=
2
*
c
*
dz
;
break
;
}
case
THYLA_TYPE_CYL_TO_PLANE:
{
double
X0
=
params
[
0
];
double
R0
=
params
[
1
];
double
R
=
params
[
2
];
double
s
=
(
params
[
6
]
>
0.0
)
?
1.0
:
-
1.0
;
// Determine the centre of the sphere.
double
dx
=
s
*
(
x
[
0
]
-
X0
);
double
ryz
=
sqrt
(
x
[
1
]
*
x
[
1
]
+
x
[
2
]
*
x
[
2
]
);
// Maybe sign is important here...
// Normalize g and n so that the normal is continuous:
double
norm
=
1.0
/
(
2.0
*
R
);
n
[
0
]
=
s
*
2
*
dx
*
norm
;
double
const_part
=
1.0
-
(
R0
+
R
)
/
ryz
;
n
[
1
]
=
2
*
x
[
1
]
*
const_part
*
norm
;
n
[
2
]
=
2
*
x
[
2
]
*
const_part
*
norm
;
break
;
}
default
:
err_flag
=
-
1
;
break
;
}
}
void
thyla_part_geom
::
mirror
(
unsigned
int
axis
,
thyla_part_geom
*
m
,
const
thyla_part_geom
*
o
)
{
// Since dir is already the index of the array this is really simple:
m
->
lo
[
0
]
=
o
->
lo
[
0
];
m
->
lo
[
1
]
=
o
->
lo
[
1
];
m
->
lo
[
2
]
=
o
->
lo
[
2
];
m
->
pt
[
0
]
=
o
->
pt
[
0
];
m
->
pt
[
1
]
=
o
->
pt
[
1
];
m
->
pt
[
2
]
=
o
->
pt
[
2
];
m
->
hi
[
0
]
=
o
->
hi
[
0
];
m
->
hi
[
1
]
=
o
->
hi
[
1
];
m
->
hi
[
2
]
=
o
->
hi
[
2
];
m
->
lo
[
axis
]
=
-
o
->
hi
[
axis
];
m
->
hi
[
axis
]
=
-
o
->
lo
[
axis
];
m
->
pt
[
axis
]
=
-
o
->
pt
[
axis
];
}
Event Timeline
Log In to Comment