Page MenuHomec4science

angle_cosine_delta_omp.cpp
No OneTemporary

File Metadata

Created
Tue, May 28, 13:30

angle_cosine_delta_omp.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "angle_cosine_delta_omp.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "domain.h"
#include "math_const.h"
#include <math.h>
#include "suffix.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleCosineDeltaOMP::AngleCosineDeltaOMP(class LAMMPS *lmp)
: AngleCosineDelta(lmp), ThrOMP(lmp,THR_ANGLE)
{
suffix_flag |= Suffix::OMP;
}
/* ---------------------------------------------------------------------- */
void AngleCosineDeltaOMP::compute(int eflag, int vflag)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
} else evflag = 0;
const int nall = atom->nlocal + atom->nghost;
const int nthreads = comm->nthreads;
const int inum = neighbor->nanglelist;
#if defined(_OPENMP)
#pragma omp parallel default(none) shared(eflag,vflag)
#endif
{
int ifrom, ito, tid;
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
ThrData *thr = fix->get_thr(tid);
ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr);
if (inum > 0) {
if (evflag) {
if (eflag) {
if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr);
else eval<1,1,0>(ifrom, ito, thr);
} else {
if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr);
else eval<1,0,0>(ifrom, ito, thr);
}
} else {
if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr);
else eval<0,0,0>(ifrom, ito, thr);
}
}
reduce_thr(this, eflag, vflag, thr);
} // end of omp parallel region
}
template <int EVFLAG, int EFLAG, int NEWTON_BOND>
void AngleCosineDeltaOMP::eval(int nfrom, int nto, ThrData * const thr)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2,theta,dtheta,dcostheta,tk;
double eangle,f1[3],f3[3];
double rsq1,rsq2,r1,r2,c,a,cot,a11,a12,a22,b11,b12,b22,c0,s0,s;
const dbl3_t * _noalias const x = (dbl3_t *) atom->x[0];
dbl3_t * _noalias const f = (dbl3_t *) thr->get_f()[0];
const int4_t * _noalias const anglelist = (int4_t *) neighbor->anglelist[0];
const int nlocal = atom->nlocal;
eangle = 0.0;
for (n = nfrom; n < nto; n++) {
i1 = anglelist[n].a;
i2 = anglelist[n].b;
i3 = anglelist[n].c;
type = anglelist[n].t;
// 1st bond
delx1 = x[i1].x - x[i2].x;
dely1 = x[i1].y - x[i2].y;
delz1 = x[i1].z - x[i2].z;
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3].x - x[i2].x;
dely2 = x[i3].y - x[i2].y;
delz2 = x[i3].z - x[i2].z;
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
theta = acos(c);
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
cot = c/s;
// force & energy
dtheta = theta - theta0[type];
dcostheta = cos(dtheta);
tk = k[type] * (1.0-dcostheta);
if (EFLAG) eangle = tk;
a = -k[type];
// expand dtheta for cos and sin contribution to force
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
b11 = -a*c*cot / rsq1;
b12 = a*cot / (r1*r2);
b22 = -a*c*cot / rsq2;
c0 = cos(theta0[type]);
s0 = sin(theta0[type]);
f1[0] = (a11*delx1 + a12*delx2)*c0 + (b11*delx1 + b12*delx2)*s0;
f1[1] = (a11*dely1 + a12*dely2)*c0 + (b11*dely1 + b12*dely2)*s0;
f1[2] = (a11*delz1 + a12*delz2)*c0 + (b11*delz1 + b12*delz2)*s0;
f3[0] = (a22*delx2 + a12*delx1)*c0 + (b22*delx2 + b12*delx1)*s0;
f3[1] = (a22*dely2 + a12*dely1)*c0 + (b22*dely2 + b12*dely1)*s0;
f3[2] = (a22*delz2 + a12*delz1)*c0 + (b22*delz2 + b12*delz1)*s0;
// apply force to each of 3 atoms
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1[0];
f[i1].y += f1[1];
f[i1].z += f1[2];
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x -= f1[0] + f3[0];
f[i2].y -= f1[1] + f3[1];
f[i2].z -= f1[2] + f3[2];
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3[0];
f[i3].y += f3[1];
f[i3].z += f3[2];
}
if (EVFLAG) ev_tally_thr(this,i1,i2,i3,nlocal,NEWTON_BOND,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2,thr);
}
}

Event Timeline