Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91302466
compute_heat_flux_tally.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 9, 19:51
Size
7 KB
Mime Type
text/x-c
Expires
Mon, Nov 11, 19:51 (2 d)
Engine
blob
Format
Raw Data
Handle
22239390
Attached To
rLAMMPS lammps
compute_heat_flux_tally.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "string.h"
#include "compute_heat_flux_tally.h"
#include "atom.h"
#include "group.h"
#include "pair.h"
#include "update.h"
#include "memory.h"
#include "error.h"
#include "force.h"
using
namespace
LAMMPS_NS
;
/* ---------------------------------------------------------------------- */
ComputeHeatFluxTally
::
ComputeHeatFluxTally
(
LAMMPS
*
lmp
,
int
narg
,
char
**
arg
)
:
Compute
(
lmp
,
narg
,
arg
)
{
if
(
narg
<
4
)
error
->
all
(
FLERR
,
"Illegal compute heat/flux/tally command"
);
igroup2
=
group
->
find
(
arg
[
3
]);
if
(
igroup2
==
-
1
)
error
->
all
(
FLERR
,
"Could not find compute heat/flux/tally second group ID"
);
groupbit2
=
group
->
bitmask
[
igroup2
];
vector_flag
=
1
;
timeflag
=
1
;
comm_reverse
=
7
;
extvector
=
1
;
size_vector
=
6
;
peflag
=
1
;
// we need Pair::ev_tally() to be run
did_compute
=
0
;
nmax
=
-
1
;
stress
=
NULL
;
eatom
=
NULL
;
vector
=
new
double
[
size_vector
];
}
/* ---------------------------------------------------------------------- */
ComputeHeatFluxTally
::~
ComputeHeatFluxTally
()
{
if
(
force
->
pair
)
force
->
pair
->
del_tally_callback
(
this
);
delete
[]
vector
;
}
/* ---------------------------------------------------------------------- */
void
ComputeHeatFluxTally
::
init
()
{
if
(
force
->
pair
==
NULL
)
error
->
all
(
FLERR
,
"Trying to use compute heat/flux/tally with no pair style"
);
else
force
->
pair
->
add_tally_callback
(
this
);
did_compute
=
-
1
;
}
/* ---------------------------------------------------------------------- */
void
ComputeHeatFluxTally
::
pair_tally_callback
(
int
i
,
int
j
,
int
nlocal
,
int
newton
,
double
evdwl
,
double
ecoul
,
double
fpair
,
double
dx
,
double
dy
,
double
dz
)
{
const
int
ntotal
=
atom
->
nlocal
+
atom
->
nghost
;
const
int
*
const
mask
=
atom
->
mask
;
// do setup work that needs to be done only once per timestep
if
(
did_compute
!=
update
->
ntimestep
)
{
did_compute
=
update
->
ntimestep
;
// grow local stress and eatom arrays if necessary
// needs to be atom->nmax in length
if
(
atom
->
nmax
>
nmax
)
{
memory
->
destroy
(
stress
);
nmax
=
atom
->
nmax
;
memory
->
create
(
stress
,
nmax
,
6
,
"heat/flux/tally:stress"
);
memory
->
destroy
(
eatom
);
nmax
=
atom
->
nmax
;
memory
->
create
(
eatom
,
nmax
,
"heat/flux/tally:eatom"
);
}
// clear storage as needed
if
(
newton
)
{
for
(
int
i
=
0
;
i
<
ntotal
;
++
i
)
{
eatom
[
i
]
=
0.0
;
stress
[
i
][
0
]
=
0.0
;
stress
[
i
][
1
]
=
0.0
;
stress
[
i
][
2
]
=
0.0
;
stress
[
i
][
3
]
=
0.0
;
stress
[
i
][
4
]
=
0.0
;
stress
[
i
][
5
]
=
0.0
;
}
}
else
{
for
(
int
i
=
0
;
i
<
atom
->
nlocal
;
++
i
)
{
eatom
[
i
]
=
0.0
;
stress
[
i
][
0
]
=
0.0
;
stress
[
i
][
1
]
=
0.0
;
stress
[
i
][
2
]
=
0.0
;
stress
[
i
][
3
]
=
0.0
;
stress
[
i
][
4
]
=
0.0
;
stress
[
i
][
5
]
=
0.0
;
}
}
for
(
int
i
=
0
;
i
<
size_vector
;
++
i
)
vector
[
i
]
=
heatj
[
i
]
=
0.0
;
}
if
(
((
mask
[
i
]
&
groupbit
)
&&
(
mask
[
j
]
&
groupbit2
))
||
((
mask
[
i
]
&
groupbit2
)
&&
(
mask
[
j
]
&
groupbit
))
)
{
const
double
epairhalf
=
0.5
*
(
evdwl
+
ecoul
);
fpair
*=
0.5
;
const
double
v0
=
dx
*
dx
*
fpair
;
// dx*fpair = Fij_x
const
double
v1
=
dy
*
dy
*
fpair
;
const
double
v2
=
dz
*
dz
*
fpair
;
const
double
v3
=
dx
*
dy
*
fpair
;
const
double
v4
=
dx
*
dz
*
fpair
;
const
double
v5
=
dy
*
dz
*
fpair
;
if
(
newton
||
i
<
nlocal
)
{
eatom
[
i
]
+=
epairhalf
;
stress
[
i
][
0
]
+=
v0
;
stress
[
i
][
1
]
+=
v1
;
stress
[
i
][
2
]
+=
v2
;
stress
[
i
][
3
]
+=
v3
;
stress
[
i
][
4
]
+=
v4
;
stress
[
i
][
5
]
+=
v5
;
}
if
(
newton
||
j
<
nlocal
)
{
eatom
[
j
]
+=
epairhalf
;
stress
[
j
][
0
]
+=
v0
;
stress
[
j
][
1
]
+=
v1
;
stress
[
j
][
2
]
+=
v2
;
stress
[
j
][
3
]
+=
v3
;
stress
[
j
][
4
]
+=
v4
;
stress
[
j
][
5
]
+=
v5
;
}
}
}
/* ---------------------------------------------------------------------- */
int
ComputeHeatFluxTally
::
pack_reverse_comm
(
int
n
,
int
first
,
double
*
buf
)
{
int
i
,
m
,
last
;
m
=
0
;
last
=
first
+
n
;
for
(
i
=
first
;
i
<
last
;
i
++
)
{
buf
[
m
++
]
=
eatom
[
i
];
buf
[
m
++
]
=
stress
[
i
][
0
];
buf
[
m
++
]
=
stress
[
i
][
1
];
buf
[
m
++
]
=
stress
[
i
][
2
];
buf
[
m
++
]
=
stress
[
i
][
3
];
buf
[
m
++
]
=
stress
[
i
][
4
];
buf
[
m
++
]
=
stress
[
i
][
5
];
}
return
m
;
}
/* ---------------------------------------------------------------------- */
void
ComputeHeatFluxTally
::
unpack_reverse_comm
(
int
n
,
int
*
list
,
double
*
buf
)
{
int
i
,
j
,
m
;
m
=
0
;
for
(
i
=
0
;
i
<
n
;
i
++
)
{
j
=
list
[
i
];
eatom
[
j
]
+=
buf
[
m
++
];
stress
[
j
][
0
]
+=
buf
[
m
++
];
stress
[
j
][
1
]
+=
buf
[
m
++
];
stress
[
j
][
2
]
+=
buf
[
m
++
];
stress
[
j
][
3
]
+=
buf
[
m
++
];
stress
[
j
][
4
]
+=
buf
[
m
++
];
stress
[
j
][
5
]
+=
buf
[
m
++
];
}
}
/* ---------------------------------------------------------------------- */
void
ComputeHeatFluxTally
::
compute_vector
()
{
invoked_vector
=
update
->
ntimestep
;
if
(
update
->
eflag_global
!=
invoked_vector
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
// collect contributions from ghost atoms
if
(
force
->
newton_pair
)
{
comm
->
reverse_comm_compute
(
this
);
const
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
for
(
int
i
=
atom
->
nlocal
;
i
<
nall
;
++
i
)
{
eatom
[
i
]
=
0.0
;
stress
[
i
][
0
]
=
0.0
;
stress
[
i
][
1
]
=
0.0
;
stress
[
i
][
2
]
=
0.0
;
stress
[
i
][
3
]
=
0.0
;
stress
[
i
][
4
]
=
0.0
;
stress
[
i
][
5
]
=
0.0
;
}
}
// compute heat currents
// heat flux vector = jc[3] + jv[3]
// jc[3] = convective portion of heat flux = sum_i (ke_i + pe_i) v_i[3]
// jv[3] = virial portion of heat flux = sum_i (stress_tensor_i . v_i[3])
// normalization by volume is not included
// J = sum_i( (0.5*m*v_i^2 + 0.5*(evdwl_i+ecoul_i))*v_i +
// + (F_ij . v_i)*dR_ij/2 )
int
nlocal
=
atom
->
nlocal
;
int
*
mask
=
atom
->
mask
;
const
double
pfactor
=
0.5
*
force
->
mvv2e
;
double
**
v
=
atom
->
v
;
double
*
mass
=
atom
->
mass
;
int
*
type
=
atom
->
type
;
double
jc
[
3
]
=
{
0.0
,
0.0
,
0.0
};
double
jv
[
3
]
=
{
0.0
,
0.0
,
0.0
};
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
{
if
(
mask
[
i
]
&
groupbit
)
{
double
ke_i
=
pfactor
*
mass
[
type
[
i
]]
*
(
v
[
i
][
0
]
*
v
[
i
][
0
]
+
v
[
i
][
1
]
*
v
[
i
][
1
]
+
v
[
i
][
2
]
*
v
[
i
][
2
]);
jc
[
0
]
+=
(
ke_i
+
eatom
[
i
])
*
v
[
i
][
0
];
jc
[
1
]
+=
(
ke_i
+
eatom
[
i
])
*
v
[
i
][
1
];
jc
[
2
]
+=
(
ke_i
+
eatom
[
i
])
*
v
[
i
][
2
];
jv
[
0
]
+=
stress
[
i
][
0
]
*
v
[
i
][
0
]
+
stress
[
i
][
3
]
*
v
[
i
][
1
]
+
stress
[
i
][
4
]
*
v
[
i
][
2
];
jv
[
1
]
+=
stress
[
i
][
3
]
*
v
[
i
][
0
]
+
stress
[
i
][
1
]
*
v
[
i
][
1
]
+
stress
[
i
][
5
]
*
v
[
i
][
2
];
jv
[
2
]
+=
stress
[
i
][
4
]
*
v
[
i
][
0
]
+
stress
[
i
][
5
]
*
v
[
i
][
1
]
+
stress
[
i
][
2
]
*
v
[
i
][
2
];
}
}
// sum accumulated heatj across procs
heatj
[
0
]
=
jc
[
0
]
+
jv
[
0
];
heatj
[
1
]
=
jc
[
1
]
+
jv
[
1
];
heatj
[
2
]
=
jc
[
2
]
+
jv
[
2
];
heatj
[
3
]
=
jc
[
0
];
heatj
[
4
]
=
jc
[
1
];
heatj
[
5
]
=
jc
[
2
];
MPI_Allreduce
(
heatj
,
vector
,
size_vector
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
}
/* ----------------------------------------------------------------------
memory usage of local atom-based array
------------------------------------------------------------------------- */
double
ComputeHeatFluxTally
::
memory_usage
()
{
double
bytes
=
nmax
*
comm_reverse
*
sizeof
(
double
);
return
bytes
;
}
Event Timeline
Log In to Comment