Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90714546
compute_temp_chunk.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 02:50
Size
23 KB
Mime Type
text/x-c
Expires
Wed, Nov 6, 02:50 (2 d)
Engine
blob
Format
Raw Data
Handle
22123878
Attached To
rLAMMPS lammps
compute_temp_chunk.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include <string.h>
#include "compute_temp_chunk.h"
#include "atom.h"
#include "update.h"
#include "force.h"
#include "modify.h"
#include "compute_chunk_atom.h"
#include "domain.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
enum
{
TEMP
,
KECOM
,
INTERNAL
};
/* ---------------------------------------------------------------------- */
ComputeTempChunk
::
ComputeTempChunk
(
LAMMPS
*
lmp
,
int
narg
,
char
**
arg
)
:
Compute
(
lmp
,
narg
,
arg
)
{
if
(
narg
<
4
)
error
->
all
(
FLERR
,
"Illegal compute temp/chunk command"
);
scalar_flag
=
vector_flag
=
1
;
size_vector
=
6
;
extscalar
=
0
;
extvector
=
1
;
tempflag
=
1
;
// ID of compute chunk/atom
int
n
=
strlen
(
arg
[
3
])
+
1
;
idchunk
=
new
char
[
n
];
strcpy
(
idchunk
,
arg
[
3
]);
biasflag
=
0
;
init
();
// optional per-chunk values
nvalues
=
narg
-
4
;
which
=
new
int
[
nvalues
];
nvalues
=
0
;
int
iarg
=
4
;
while
(
iarg
<
narg
)
{
if
(
strcmp
(
arg
[
iarg
],
"temp"
)
==
0
)
which
[
nvalues
]
=
TEMP
;
else
if
(
strcmp
(
arg
[
iarg
],
"kecom"
)
==
0
)
which
[
nvalues
]
=
KECOM
;
else
if
(
strcmp
(
arg
[
iarg
],
"internal"
)
==
0
)
which
[
nvalues
]
=
INTERNAL
;
else
break
;
iarg
++
;
nvalues
++
;
}
// optional args
comflag
=
0
;
biasflag
=
0
;
id_bias
=
NULL
;
adof
=
domain
->
dimension
;
cdof
=
0.0
;
while
(
iarg
<
narg
)
{
if
(
strcmp
(
arg
[
iarg
],
"com"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal compute temp/chunk command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"yes"
)
==
0
)
comflag
=
1
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"no"
)
==
0
)
comflag
=
0
;
else
error
->
all
(
FLERR
,
"Illegal compute temp/chunk command"
);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"bias"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal compute temp/chunk command"
);
biasflag
=
1
;
int
n
=
strlen
(
arg
[
iarg
+
1
])
+
1
;
id_bias
=
new
char
[
n
];
strcpy
(
id_bias
,
arg
[
iarg
+
1
]);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"adof"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal compute temp/chunk command"
);
adof
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"cdof"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal compute temp/chunk command"
);
cdof
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
iarg
+=
2
;
}
else
error
->
all
(
FLERR
,
"Illegal compute temp/chunk command"
);
}
// error check on bias compute
if
(
biasflag
)
{
int
i
=
modify
->
find_compute
(
id_bias
);
if
(
i
<
0
)
error
->
all
(
FLERR
,
"Could not find compute ID for temperature bias"
);
tbias
=
modify
->
compute
[
i
];
if
(
tbias
->
tempflag
==
0
)
error
->
all
(
FLERR
,
"Bias compute does not calculate temperature"
);
if
(
tbias
->
tempbias
==
0
)
error
->
all
(
FLERR
,
"Bias compute does not calculate a velocity bias"
);
}
// this compute only calculates a bias, if comflag is set
// won't be two biases since comflag and biasflag cannot both be set
if
(
comflag
&&
biasflag
)
error
->
all
(
FLERR
,
"Cannot use both com and bias with compute temp/chunk"
);
if
(
comflag
)
tempbias
=
1
;
// vector data
vector
=
new
double
[
6
];
// chunk-based data
nchunk
=
1
;
maxchunk
=
0
;
sum
=
sumall
=
NULL
;
count
=
countall
=
NULL
;
massproc
=
masstotal
=
NULL
;
vcm
=
vcmall
=
NULL
;
array
=
NULL
;
if
(
nvalues
)
{
array_flag
=
1
;
size_array_cols
=
nvalues
;
size_array_rows
=
0
;
size_array_rows_variable
=
1
;
extarray
=
0
;
}
allocate
();
comstep
=
-
1
;
}
/* ---------------------------------------------------------------------- */
ComputeTempChunk
::~
ComputeTempChunk
()
{
delete
[]
idchunk
;
delete
[]
which
;
delete
[]
id_bias
;
delete
[]
vector
;
memory
->
destroy
(
sum
);
memory
->
destroy
(
sumall
);
memory
->
destroy
(
count
);
memory
->
destroy
(
countall
);
memory
->
destroy
(
array
);
memory
->
destroy
(
massproc
);
memory
->
destroy
(
masstotal
);
memory
->
destroy
(
vcm
);
memory
->
destroy
(
vcmall
);
}
/* ---------------------------------------------------------------------- */
void
ComputeTempChunk
::
init
()
{
int
icompute
=
modify
->
find_compute
(
idchunk
);
if
(
icompute
<
0
)
error
->
all
(
FLERR
,
"Chunk/atom compute does not exist for "
"compute temp/chunk"
);
cchunk
=
(
ComputeChunkAtom
*
)
modify
->
compute
[
icompute
];
if
(
strcmp
(
cchunk
->
style
,
"chunk/atom"
)
!=
0
)
error
->
all
(
FLERR
,
"Compute temp/chunk does not use chunk/atom compute"
);
if
(
biasflag
)
{
int
i
=
modify
->
find_compute
(
id_bias
);
if
(
i
<
0
)
error
->
all
(
FLERR
,
"Could not find compute ID for temperature bias"
);
tbias
=
modify
->
compute
[
i
];
}
}
/* ---------------------------------------------------------------------- */
double
ComputeTempChunk
::
compute_scalar
()
{
int
i
,
index
;
invoked_scalar
=
update
->
ntimestep
;
// calculate chunk assignments,
// since only atoms in chunks contribute to global temperature
// compute chunk/atom assigns atoms to chunk IDs
// extract ichunk index vector from compute
// ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms
nchunk
=
cchunk
->
setup_chunks
();
cchunk
->
compute_ichunk
();
int
*
ichunk
=
cchunk
->
ichunk
;
if
(
nchunk
>
maxchunk
)
allocate
();
// remove velocity bias
if
(
biasflag
)
{
if
(
tbias
->
invoked_scalar
!=
update
->
ntimestep
)
tbias
->
compute_scalar
();
tbias
->
remove_bias_all
();
}
// calculate COM velocity for each chunk
// won't be invoked with bias also removed = 2 biases
if
(
comflag
&&
comstep
!=
update
->
ntimestep
)
vcm_compute
();
// calculate global temperature, optionally removing COM velocity
double
**
v
=
atom
->
v
;
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
int
*
type
=
atom
->
type
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
double
t
=
0.0
;
int
mycount
=
0
;
if
(
!
comflag
)
{
if
(
rmass
)
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
t
+=
(
v
[
i
][
0
]
*
v
[
i
][
0
]
+
v
[
i
][
1
]
*
v
[
i
][
1
]
+
v
[
i
][
2
]
*
v
[
i
][
2
])
*
rmass
[
i
];
mycount
++
;
}
}
else
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
t
+=
(
v
[
i
][
0
]
*
v
[
i
][
0
]
+
v
[
i
][
1
]
*
v
[
i
][
1
]
+
v
[
i
][
2
]
*
v
[
i
][
2
])
*
mass
[
type
[
i
]];
mycount
++
;
}
}
}
else
{
double
vx
,
vy
,
vz
;
if
(
rmass
)
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
vx
=
v
[
i
][
0
]
-
vcmall
[
index
][
0
];
vy
=
v
[
i
][
1
]
-
vcmall
[
index
][
1
];
vz
=
v
[
i
][
2
]
-
vcmall
[
index
][
2
];
t
+=
(
vx
*
vx
+
vy
*
vy
+
vz
*
vz
)
*
rmass
[
i
];
mycount
++
;
}
}
else
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
vx
=
v
[
i
][
0
]
-
vcmall
[
index
][
0
];
vy
=
v
[
i
][
1
]
-
vcmall
[
index
][
1
];
vz
=
v
[
i
][
2
]
-
vcmall
[
index
][
2
];
t
+=
(
vx
*
vx
+
vy
*
vy
+
vz
*
vz
)
*
mass
[
type
[
i
]];
mycount
++
;
}
}
}
// restore velocity bias
if
(
biasflag
)
tbias
->
restore_bias_all
();
// final temperature
MPI_Allreduce
(
&
t
,
&
scalar
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
double
rcount
=
mycount
;
double
allcount
;
MPI_Allreduce
(
&
rcount
,
&
allcount
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
double
dof
=
nchunk
*
cdof
+
adof
*
allcount
;
double
tfactor
=
0.0
;
if
(
dof
>
0.0
)
tfactor
=
force
->
mvv2e
/
(
dof
*
force
->
boltz
);
if
(
dof
<
0.0
&&
allcount
>
0.0
)
error
->
all
(
FLERR
,
"Temperature compute degrees of freedom < 0"
);
scalar
*=
tfactor
;
return
scalar
;
}
/* ---------------------------------------------------------------------- */
void
ComputeTempChunk
::
compute_vector
()
{
int
i
,
index
;
invoked_vector
=
update
->
ntimestep
;
// calculate chunk assignments,
// since only atoms in chunks contribute to global temperature
// compute chunk/atom assigns atoms to chunk IDs
// extract ichunk index vector from compute
// ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms
nchunk
=
cchunk
->
setup_chunks
();
cchunk
->
compute_ichunk
();
int
*
ichunk
=
cchunk
->
ichunk
;
if
(
nchunk
>
maxchunk
)
allocate
();
// remove velocity bias
if
(
biasflag
)
{
if
(
tbias
->
invoked_scalar
!=
update
->
ntimestep
)
tbias
->
compute_scalar
();
tbias
->
remove_bias_all
();
}
// calculate COM velocity for each chunk
// won't be invoked with bias also removed = 2 biases
if
(
comflag
&&
comstep
!=
update
->
ntimestep
)
vcm_compute
();
// calculate KE tensor, optionally removing COM velocity
double
**
v
=
atom
->
v
;
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
int
*
type
=
atom
->
type
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
double
massone
,
t
[
6
];
for
(
i
=
0
;
i
<
6
;
i
++
)
t
[
i
]
=
0.0
;
if
(
!
comflag
)
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
if
(
rmass
)
massone
=
rmass
[
i
];
else
massone
=
mass
[
type
[
i
]];
t
[
0
]
+=
massone
*
v
[
i
][
0
]
*
v
[
i
][
0
];
t
[
1
]
+=
massone
*
v
[
i
][
1
]
*
v
[
i
][
1
];
t
[
2
]
+=
massone
*
v
[
i
][
2
]
*
v
[
i
][
2
];
t
[
3
]
+=
massone
*
v
[
i
][
0
]
*
v
[
i
][
1
];
t
[
4
]
+=
massone
*
v
[
i
][
0
]
*
v
[
i
][
2
];
t
[
5
]
+=
massone
*
v
[
i
][
1
]
*
v
[
i
][
2
];
}
}
else
{
double
vx
,
vy
,
vz
;
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
if
(
rmass
)
massone
=
rmass
[
i
];
else
massone
=
mass
[
type
[
i
]];
vx
=
v
[
i
][
0
]
-
vcmall
[
index
][
0
];
vy
=
v
[
i
][
1
]
-
vcmall
[
index
][
1
];
vz
=
v
[
i
][
2
]
-
vcmall
[
index
][
2
];
t
[
0
]
+=
massone
*
vx
*
vx
;
t
[
1
]
+=
massone
*
vy
*
vy
;
t
[
2
]
+=
massone
*
vz
*
vz
;
t
[
3
]
+=
massone
*
vx
*
vy
;
t
[
4
]
+=
massone
*
vx
*
vz
;
t
[
5
]
+=
massone
*
vy
*
vz
;
}
}
// restore velocity bias
if
(
biasflag
)
tbias
->
restore_bias_all
();
// final KE
MPI_Allreduce
(
t
,
vector
,
6
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
for
(
i
=
0
;
i
<
6
;
i
++
)
vector
[
i
]
*=
force
->
mvv2e
;
}
/* ---------------------------------------------------------------------- */
void
ComputeTempChunk
::
compute_array
()
{
invoked_array
=
update
->
ntimestep
;
// compute chunk/atom assigns atoms to chunk IDs
// extract ichunk index vector from compute
// ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms
nchunk
=
cchunk
->
setup_chunks
();
cchunk
->
compute_ichunk
();
if
(
nchunk
>
maxchunk
)
allocate
();
size_array_rows
=
nchunk
;
// remove velocity bias
if
(
biasflag
)
{
if
(
tbias
->
invoked_scalar
!=
update
->
ntimestep
)
tbias
->
compute_scalar
();
tbias
->
remove_bias_all
();
}
// calculate COM velocity for each chunk whether comflag set or not
// needed by some values even if comflag not set
// important to do this after velocity bias is removed
// otherwise per-chunk values that use both v and vcm will be inconsistent
if
(
comstep
!=
update
->
ntimestep
)
vcm_compute
();
// compute each value
for
(
int
i
=
0
;
i
<
nvalues
;
i
++
)
{
if
(
which
[
i
]
==
TEMP
)
temperature
(
i
);
else
if
(
which
[
i
]
==
KECOM
)
kecom
(
i
);
else
if
(
which
[
i
]
==
INTERNAL
)
internal
(
i
);
}
// restore velocity bias
if
(
biasflag
)
tbias
->
restore_bias_all
();
}
/* ----------------------------------------------------------------------
calculate velocity of COM for each chunk
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
vcm_compute
()
{
int
i
,
index
;
double
massone
;
// avoid re-computing VCM more than once per step
comstep
=
update
->
ntimestep
;
int
*
ichunk
=
cchunk
->
ichunk
;
for
(
int
i
=
0
;
i
<
nchunk
;
i
++
)
{
vcm
[
i
][
0
]
=
vcm
[
i
][
1
]
=
vcm
[
i
][
2
]
=
0.0
;
massproc
[
i
]
=
0.0
;
}
double
**
v
=
atom
->
v
;
int
*
mask
=
atom
->
mask
;
int
*
type
=
atom
->
type
;
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
int
nlocal
=
atom
->
nlocal
;
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
if
(
rmass
)
massone
=
rmass
[
i
];
else
massone
=
mass
[
type
[
i
]];
vcm
[
index
][
0
]
+=
v
[
i
][
0
]
*
massone
;
vcm
[
index
][
1
]
+=
v
[
i
][
1
]
*
massone
;
vcm
[
index
][
2
]
+=
v
[
i
][
2
]
*
massone
;
massproc
[
index
]
+=
massone
;
}
MPI_Allreduce
(
&
vcm
[
0
][
0
],
&
vcmall
[
0
][
0
],
3
*
nchunk
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
MPI_Allreduce
(
massproc
,
masstotal
,
nchunk
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
for
(
i
=
0
;
i
<
nchunk
;
i
++
)
{
vcmall
[
i
][
0
]
/=
masstotal
[
i
];
vcmall
[
i
][
1
]
/=
masstotal
[
i
];
vcmall
[
i
][
2
]
/=
masstotal
[
i
];
}
}
/* ----------------------------------------------------------------------
temperature of each chunk
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
temperature
(
int
icol
)
{
int
i
,
index
;
int
*
ichunk
=
cchunk
->
ichunk
;
// zero local per-chunk values
for
(
int
i
=
0
;
i
<
nchunk
;
i
++
)
{
count
[
i
]
=
0
;
sum
[
i
]
=
0.0
;
}
// per-chunk temperature, option for removing COM velocity
double
**
v
=
atom
->
v
;
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
int
*
mask
=
atom
->
mask
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
if
(
!
comflag
)
{
if
(
rmass
)
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
sum
[
index
]
+=
(
v
[
i
][
0
]
*
v
[
i
][
0
]
+
v
[
i
][
1
]
*
v
[
i
][
1
]
+
v
[
i
][
2
]
*
v
[
i
][
2
])
*
rmass
[
i
];
count
[
index
]
++
;
}
}
else
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
sum
[
index
]
+=
(
v
[
i
][
0
]
*
v
[
i
][
0
]
+
v
[
i
][
1
]
*
v
[
i
][
1
]
+
v
[
i
][
2
]
*
v
[
i
][
2
])
*
mass
[
type
[
i
]];
count
[
index
]
++
;
}
}
}
else
{
double
vx
,
vy
,
vz
;
if
(
rmass
)
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
vx
=
v
[
i
][
0
]
-
vcmall
[
index
][
0
];
vy
=
v
[
i
][
1
]
-
vcmall
[
index
][
1
];
vz
=
v
[
i
][
2
]
-
vcmall
[
index
][
2
];
sum
[
index
]
+=
(
vx
*
vx
+
vy
*
vy
+
vz
*
vz
)
*
rmass
[
i
];
count
[
index
]
++
;
}
}
else
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
vx
=
v
[
i
][
0
]
-
vcmall
[
index
][
0
];
vy
=
v
[
i
][
1
]
-
vcmall
[
index
][
1
];
vz
=
v
[
i
][
2
]
-
vcmall
[
index
][
2
];
sum
[
index
]
+=
(
vx
*
vx
+
vy
*
vy
+
vz
*
vz
)
*
mass
[
type
[
i
]];
count
[
index
]
++
;
}
}
}
// sum across procs
MPI_Allreduce
(
sum
,
sumall
,
nchunk
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
MPI_Allreduce
(
count
,
countall
,
nchunk
,
MPI_INT
,
MPI_SUM
,
world
);
// normalize temperatures by per-chunk DOF
double
dof
,
tfactor
;
double
mvv2e
=
force
->
mvv2e
;
double
boltz
=
force
->
boltz
;
for
(
int
i
=
0
;
i
<
nchunk
;
i
++
)
{
dof
=
cdof
+
adof
*
countall
[
i
];
if
(
dof
>
0.0
)
tfactor
=
mvv2e
/
(
dof
*
boltz
);
else
tfactor
=
0.0
;
array
[
i
][
icol
]
=
tfactor
*
sumall
[
i
];
}
}
/* ----------------------------------------------------------------------
KE of entire chunk moving at VCM
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
kecom
(
int
icol
)
{
int
index
;
int
*
ichunk
=
cchunk
->
ichunk
;
// zero local per-chunk values
for
(
int
i
=
0
;
i
<
nchunk
;
i
++
)
sum
[
i
]
=
0.0
;
// per-chunk COM KE
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
int
*
mask
=
atom
->
mask
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
vx
,
vy
,
vz
;
if
(
rmass
)
{
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
vx
=
vcmall
[
index
][
0
];
vy
=
vcmall
[
index
][
1
];
vz
=
vcmall
[
index
][
2
];
sum
[
index
]
+=
(
vx
*
vx
+
vy
*
vy
+
vz
*
vz
)
*
rmass
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
vx
=
vcmall
[
index
][
0
];
vy
=
vcmall
[
index
][
1
];
vz
=
vcmall
[
index
][
2
];
sum
[
index
]
+=
(
vx
*
vx
+
vy
*
vy
+
vz
*
vz
)
*
mass
[
type
[
i
]];
}
}
// sum across procs
MPI_Allreduce
(
sum
,
sumall
,
nchunk
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
double
mvv2e
=
force
->
mvv2e
;
for
(
int
i
=
0
;
i
<
nchunk
;
i
++
)
array
[
i
][
icol
]
=
0.5
*
mvv2e
*
sumall
[
i
];
}
/* ----------------------------------------------------------------------
internal KE of each chunk around its VCM
computed using per-atom velocities with chunk VCM subtracted off
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
internal
(
int
icol
)
{
int
index
;
int
*
ichunk
=
cchunk
->
ichunk
;
// zero local per-chunk values
for
(
int
i
=
0
;
i
<
nchunk
;
i
++
)
sum
[
i
]
=
0.0
;
// per-chunk internal KE
double
**
v
=
atom
->
v
;
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
int
*
mask
=
atom
->
mask
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
vx
,
vy
,
vz
;
if
(
rmass
)
{
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
vx
=
v
[
i
][
0
]
-
vcmall
[
index
][
0
];
vy
=
v
[
i
][
1
]
-
vcmall
[
index
][
1
];
vz
=
v
[
i
][
2
]
-
vcmall
[
index
][
2
];
sum
[
index
]
+=
(
vx
*
vx
+
vy
*
vy
+
vz
*
vz
)
*
rmass
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
]
-
1
;
if
(
index
<
0
)
continue
;
vx
=
v
[
i
][
0
]
-
vcmall
[
index
][
0
];
vy
=
v
[
i
][
1
]
-
vcmall
[
index
][
1
];
vz
=
v
[
i
][
2
]
-
vcmall
[
index
][
2
];
sum
[
index
]
+=
(
vx
*
vx
+
vy
*
vy
+
vz
*
vz
)
*
mass
[
type
[
i
]];
}
}
// sum across procs
MPI_Allreduce
(
sum
,
sumall
,
nchunk
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
double
mvv2e
=
force
->
mvv2e
;
for
(
int
i
=
0
;
i
<
nchunk
;
i
++
)
array
[
i
][
icol
]
=
0.5
*
mvv2e
*
sumall
[
i
];
}
/* ----------------------------------------------------------------------
bias methods: called by thermostats
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
remove velocity bias from atom I to leave thermal velocity
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
remove_bias
(
int
i
,
double
*
v
)
{
int
index
=
cchunk
->
ichunk
[
i
];
if
(
index
<
0
)
return
;
v
[
0
]
-=
vcmall
[
index
][
0
];
v
[
1
]
-=
vcmall
[
index
][
1
];
v
[
2
]
-=
vcmall
[
index
][
2
];
}
/* ----------------------------------------------------------------------
remove velocity bias from all atoms to leave thermal velocity
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
remove_bias_all
()
{
int
index
;
int
*
ichunk
=
cchunk
->
ichunk
;
double
**
v
=
atom
->
v
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
];
if
(
index
<
0
)
continue
;
v
[
i
][
0
]
-=
vbias
[
0
];
v
[
i
][
1
]
-=
vbias
[
1
];
v
[
i
][
2
]
-=
vbias
[
2
];
}
}
/* ----------------------------------------------------------------------
add back in velocity bias to atom I removed by remove_bias()
assume remove_bias() was previously called
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
restore_bias
(
int
i
,
double
*
v
)
{
int
index
=
cchunk
->
ichunk
[
i
];
if
(
index
<
0
)
return
;
v
[
0
]
+=
vcmall
[
index
][
0
];
v
[
1
]
+=
vcmall
[
index
][
1
];
v
[
2
]
+=
vcmall
[
index
][
2
];
}
/* ----------------------------------------------------------------------
add back in velocity bias to all atoms removed by remove_bias_all()
assume remove_bias_all() was previously called
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
restore_bias_all
()
{
int
index
;
int
*
ichunk
=
cchunk
->
ichunk
;
double
**
v
=
atom
->
v
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
index
=
ichunk
[
i
];
if
(
index
<
0
)
continue
;
v
[
i
][
0
]
+=
vbias
[
0
];
v
[
i
][
1
]
+=
vbias
[
1
];
v
[
i
][
2
]
+=
vbias
[
2
];
}
}
/* ----------------------------------------------------------------------
lock methods: called by fix ave/time
these methods insure vector/array size is locked for Nfreq epoch
by passing lock info along to compute chunk/atom
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
increment lock counter
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
lock_enable
()
{
cchunk
->
lockcount
++
;
}
/* ----------------------------------------------------------------------
decrement lock counter in compute chunk/atom, it if still exists
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
lock_disable
()
{
int
icompute
=
modify
->
find_compute
(
idchunk
);
if
(
icompute
>=
0
)
{
cchunk
=
(
ComputeChunkAtom
*
)
modify
->
compute
[
icompute
];
cchunk
->
lockcount
--
;
}
}
/* ----------------------------------------------------------------------
calculate and return # of chunks = length of vector/array
------------------------------------------------------------------------- */
int
ComputeTempChunk
::
lock_length
()
{
nchunk
=
cchunk
->
setup_chunks
();
return
nchunk
;
}
/* ----------------------------------------------------------------------
set the lock from startstep to stopstep
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
lock
(
Fix
*
fixptr
,
bigint
startstep
,
bigint
stopstep
)
{
cchunk
->
lock
(
fixptr
,
startstep
,
stopstep
);
}
/* ----------------------------------------------------------------------
unset the lock
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
unlock
(
Fix
*
fixptr
)
{
cchunk
->
unlock
(
fixptr
);
}
/* ----------------------------------------------------------------------
free and reallocate per-chunk arrays
------------------------------------------------------------------------- */
void
ComputeTempChunk
::
allocate
()
{
memory
->
destroy
(
sum
);
memory
->
destroy
(
sumall
);
memory
->
destroy
(
count
);
memory
->
destroy
(
countall
);
memory
->
destroy
(
array
);
maxchunk
=
nchunk
;
memory
->
create
(
sum
,
maxchunk
,
"temp/chunk:sum"
);
memory
->
create
(
sumall
,
maxchunk
,
"temp/chunk:sumall"
);
memory
->
create
(
count
,
maxchunk
,
"temp/chunk:count"
);
memory
->
create
(
countall
,
maxchunk
,
"temp/chunk:countall"
);
memory
->
create
(
array
,
maxchunk
,
nvalues
,
"temp/chunk:array"
);
if
(
comflag
||
nvalues
)
{
memory
->
destroy
(
massproc
);
memory
->
destroy
(
masstotal
);
memory
->
destroy
(
vcm
);
memory
->
destroy
(
vcmall
);
memory
->
create
(
massproc
,
maxchunk
,
"vcm/chunk:massproc"
);
memory
->
create
(
masstotal
,
maxchunk
,
"vcm/chunk:masstotal"
);
memory
->
create
(
vcm
,
maxchunk
,
3
,
"vcm/chunk:vcm"
);
memory
->
create
(
vcmall
,
maxchunk
,
3
,
"vcm/chunk:vcmall"
);
}
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double
ComputeTempChunk
::
memory_usage
()
{
double
bytes
=
(
bigint
)
maxchunk
*
2
*
sizeof
(
double
);
bytes
+=
(
bigint
)
maxchunk
*
2
*
sizeof
(
int
);
bytes
+=
(
bigint
)
maxchunk
*
nvalues
*
sizeof
(
double
);
if
(
comflag
||
nvalues
)
{
bytes
+=
(
bigint
)
maxchunk
*
2
*
sizeof
(
double
);
bytes
+=
(
bigint
)
maxchunk
*
2
*
3
*
sizeof
(
double
);
}
return
bytes
;
}
Event Timeline
Log In to Comment