Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102273591
pair_lj_cut_coul_long.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 23:59
Size
33 KB
Mime Type
text/x-c
Expires
Thu, Feb 20, 23:59 (2 d)
Engine
blob
Format
Raw Data
Handle
24321292
Attached To
rLAMMPS lammps
pair_lj_cut_coul_long.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
www.cs.sandia.gov/~sjplimp/lammps.html
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Paul Crozier (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_lj_cut_coul_long.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "kspace.h"
#include "update.h"
#include "integrate.h"
#include "respa.h"
#include "memory.h"
#include "neighbor.h"
#include "error.h"
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define EWALD_F 1.12837917
#define EWALD_P 0.3275911
#define A1 0.254829592
#define A2 -0.284496736
#define A3 1.421413741
#define A4 -1.453152027
#define A5 1.061405429
/* ---------------------------------------------------------------------- */
PairLJCutCoulLong
::
PairLJCutCoulLong
()
{
respa_enable
=
1
;
ftable
=
NULL
;
}
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
PairLJCutCoulLong
::~
PairLJCutCoulLong
()
{
if
(
allocated
)
{
memory
->
destroy_2d_int_array
(
setflag
);
memory
->
destroy_2d_double_array
(
cutsq
);
memory
->
destroy_2d_double_array
(
cut_lj
);
memory
->
destroy_2d_double_array
(
cut_ljsq
);
memory
->
destroy_2d_double_array
(
epsilon
);
memory
->
destroy_2d_double_array
(
sigma
);
memory
->
destroy_2d_double_array
(
lj1
);
memory
->
destroy_2d_double_array
(
lj2
);
memory
->
destroy_2d_double_array
(
lj3
);
memory
->
destroy_2d_double_array
(
lj4
);
memory
->
destroy_2d_double_array
(
offset
);
}
if
(
ftable
)
free_tables
();
}
/* ---------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
compute
(
int
eflag
,
int
vflag
)
{
int
i
,
j
,
k
,
numneigh
,
itype
,
jtype
,
itable
;
double
qtmp
,
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
,
fraction
,
table
;
double
r
,
r2inv
,
r6inv
,
forcecoul
,
forcelj
,
fforce
,
factor_coul
,
factor_lj
;
double
grij
,
expm2
,
prefactor
,
t
,
erfc
;
double
factor
,
phicoul
,
philj
;
int
*
neighs
;
double
**
f
;
float
rsq
;
int
*
int_rsq
=
(
int
*
)
&
rsq
;
eng_vdwl
=
eng_coul
=
0.0
;
if
(
vflag
)
for
(
i
=
0
;
i
<
6
;
i
++
)
virial
[
i
]
=
0.0
;
if
(
vflag
==
2
)
f
=
update
->
f_pair
;
else
f
=
atom
->
f
;
double
**
x
=
atom
->
x
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
// loop over neighbors of my atoms
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
{
qtmp
=
q
[
i
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
neighs
=
neighbor
->
firstneigh
[
i
];
numneigh
=
neighbor
->
numneigh
[
i
];
for
(
k
=
0
;
k
<
numneigh
;
k
++
)
{
j
=
neighs
[
k
];
if
(
j
<
nall
)
factor_coul
=
factor_lj
=
1.0
;
else
{
factor_coul
=
special_coul
[
j
/
nall
];
factor_lj
=
special_lj
[
j
/
nall
];
j
%=
nall
;
}
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
jtype
=
type
[
j
];
if
(
rsq
<
cutsq
[
itype
][
jtype
])
{
r2inv
=
1.0
/
rsq
;
if
(
rsq
<
cut_coulsq
)
{
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
r
=
sqrtf
(
rsq
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
t
=
1.0
/
(
1.0
+
EWALD_P
*
grij
);
erfc
=
t
*
(
A1
+
t
*
(
A2
+
t
*
(
A3
+
t
*
(
A4
+
t
*
A5
))))
*
expm2
;
prefactor
=
qqrd2e
*
qtmp
*
q
[
j
]
/
r
;
forcecoul
=
prefactor
*
(
erfc
+
EWALD_F
*
grij
*
expm2
);
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
else
{
itable
=
*
int_rsq
&
ncoulmask
;
itable
>>=
ncoulshiftbits
;
fraction
=
(
rsq
-
rtable
[
itable
])
*
drtable
[
itable
];
table
=
ftable
[
itable
]
+
fraction
*
dftable
[
itable
];
forcecoul
=
qtmp
*
q
[
j
]
*
table
;
if
(
factor_coul
<
1.0
)
{
table
=
ctable
[
itable
]
+
fraction
*
dctable
[
itable
];
prefactor
=
qtmp
*
q
[
j
]
*
table
;
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
}
}
else
forcecoul
=
0.0
;
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
r6inv
=
r2inv
*
r2inv
*
r2inv
;
forcelj
=
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
}
else
forcelj
=
0.0
;
fforce
=
(
forcecoul
+
factor_lj
*
forcelj
)
*
r2inv
;
f
[
i
][
0
]
+=
delx
*
fforce
;
f
[
i
][
1
]
+=
dely
*
fforce
;
f
[
i
][
2
]
+=
delz
*
fforce
;
if
(
newton_pair
||
j
<
nlocal
)
{
f
[
j
][
0
]
-=
delx
*
fforce
;
f
[
j
][
1
]
-=
dely
*
fforce
;
f
[
j
][
2
]
-=
delz
*
fforce
;
}
if
(
eflag
)
{
if
(
newton_pair
||
j
<
nlocal
)
factor
=
1.0
;
else
factor
=
0.5
;
if
(
rsq
<
cut_coulsq
)
{
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
phicoul
=
prefactor
*
erfc
;
else
{
table
=
etable
[
itable
]
+
fraction
*
detable
[
itable
];
phicoul
=
qtmp
*
q
[
j
]
*
table
;
}
if
(
factor_coul
<
1.0
)
phicoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
eng_coul
+=
factor
*
phicoul
;
}
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
philj
=
r6inv
*
(
lj3
[
itype
][
jtype
]
*
r6inv
-
lj4
[
itype
][
jtype
])
-
offset
[
itype
][
jtype
];
eng_vdwl
+=
factor
*
factor_lj
*
philj
;
}
}
if
(
vflag
==
1
)
{
if
(
newton_pair
||
j
<
nlocal
)
{
virial
[
0
]
+=
delx
*
delx
*
fforce
;
virial
[
1
]
+=
dely
*
dely
*
fforce
;
virial
[
2
]
+=
delz
*
delz
*
fforce
;
virial
[
3
]
+=
delx
*
dely
*
fforce
;
virial
[
4
]
+=
delx
*
delz
*
fforce
;
virial
[
5
]
+=
dely
*
delz
*
fforce
;
}
else
{
virial
[
0
]
+=
0.5
*
delx
*
delx
*
fforce
;
virial
[
1
]
+=
0.5
*
dely
*
dely
*
fforce
;
virial
[
2
]
+=
0.5
*
delz
*
delz
*
fforce
;
virial
[
3
]
+=
0.5
*
delx
*
dely
*
fforce
;
virial
[
4
]
+=
0.5
*
delx
*
delz
*
fforce
;
virial
[
5
]
+=
0.5
*
dely
*
delz
*
fforce
;
}
}
}
}
}
if
(
vflag
==
2
)
virial_compute
();
}
/* ---------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
compute_inner
()
{
int
i
,
j
,
k
,
numneigh
,
itype
,
jtype
;
double
qtmp
,
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
;
double
rsq
,
r2inv
,
r6inv
,
forcecoul
,
forcelj
,
fforce
,
factor_coul
,
factor_lj
;
double
rsw
;
int
*
neighs
;
double
**
f
=
atom
->
f
;
double
**
x
=
atom
->
x
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
double
cut_out_on
=
cut_respa
[
0
];
double
cut_out_off
=
cut_respa
[
1
];
double
cut_out_diff
=
cut_out_off
-
cut_out_on
;
double
cut_out_on_sq
=
cut_out_on
*
cut_out_on
;
double
cut_out_off_sq
=
cut_out_off
*
cut_out_off
;
// loop over neighbors of my atoms
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
{
qtmp
=
q
[
i
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
neighs
=
neighbor
->
firstneigh_inner
[
i
];
numneigh
=
neighbor
->
numneigh_inner
[
i
];
for
(
k
=
0
;
k
<
numneigh
;
k
++
)
{
j
=
neighs
[
k
];
if
(
j
<
nall
)
factor_coul
=
factor_lj
=
1.0
;
else
{
factor_coul
=
special_coul
[
j
/
nall
];
factor_lj
=
special_lj
[
j
/
nall
];
j
%=
nall
;
}
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
if
(
rsq
<
cut_out_off_sq
)
{
r2inv
=
1.0
/
rsq
;
forcecoul
=
qqrd2e
*
qtmp
*
q
[
j
]
*
sqrt
(
r2inv
);
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
forcecoul
;
jtype
=
type
[
j
];
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
r6inv
=
r2inv
*
r2inv
*
r2inv
;
forcelj
=
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
}
else
forcelj
=
0.0
;
fforce
=
(
forcecoul
+
factor_lj
*
forcelj
)
*
r2inv
;
if
(
rsq
>
cut_out_on_sq
)
{
rsw
=
(
sqrt
(
rsq
)
-
cut_out_on
)
/
cut_out_diff
;
fforce
*=
1.0
+
rsw
*
rsw
*
(
2.0
*
rsw
-
3.0
);
}
f
[
i
][
0
]
+=
delx
*
fforce
;
f
[
i
][
1
]
+=
dely
*
fforce
;
f
[
i
][
2
]
+=
delz
*
fforce
;
if
(
newton_pair
||
j
<
nlocal
)
{
f
[
j
][
0
]
-=
delx
*
fforce
;
f
[
j
][
1
]
-=
dely
*
fforce
;
f
[
j
][
2
]
-=
delz
*
fforce
;
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
compute_middle
()
{
int
i
,
j
,
k
,
numneigh
,
itype
,
jtype
;
double
qtmp
,
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
;
double
rsq
,
r2inv
,
r6inv
,
forcecoul
,
forcelj
,
fforce
,
factor_coul
,
factor_lj
;
double
rsw
;
int
*
neighs
;
double
**
f
=
atom
->
f
;
double
**
x
=
atom
->
x
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
double
cut_in_off
=
cut_respa
[
0
];
double
cut_in_on
=
cut_respa
[
1
];
double
cut_out_on
=
cut_respa
[
2
];
double
cut_out_off
=
cut_respa
[
3
];
double
cut_in_diff
=
cut_in_on
-
cut_in_off
;
double
cut_out_diff
=
cut_out_off
-
cut_out_on
;
double
cut_in_off_sq
=
cut_in_off
*
cut_in_off
;
double
cut_in_on_sq
=
cut_in_on
*
cut_in_on
;
double
cut_out_on_sq
=
cut_out_on
*
cut_out_on
;
double
cut_out_off_sq
=
cut_out_off
*
cut_out_off
;
// loop over neighbors of my atoms
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
{
qtmp
=
q
[
i
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
neighs
=
neighbor
->
firstneigh_middle
[
i
];
numneigh
=
neighbor
->
numneigh_middle
[
i
];
for
(
k
=
0
;
k
<
numneigh
;
k
++
)
{
j
=
neighs
[
k
];
if
(
j
<
nall
)
factor_coul
=
factor_lj
=
1.0
;
else
{
factor_coul
=
special_coul
[
j
/
nall
];
factor_lj
=
special_lj
[
j
/
nall
];
j
%=
nall
;
}
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
if
(
rsq
<
cut_out_off_sq
&&
rsq
>
cut_in_off_sq
)
{
r2inv
=
1.0
/
rsq
;
forcecoul
=
qqrd2e
*
qtmp
*
q
[
j
]
*
sqrt
(
r2inv
);
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
forcecoul
;
jtype
=
type
[
j
];
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
r6inv
=
r2inv
*
r2inv
*
r2inv
;
forcelj
=
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
}
else
forcelj
=
0.0
;
fforce
=
(
forcecoul
+
factor_lj
*
forcelj
)
*
r2inv
;
if
(
rsq
<
cut_in_on_sq
)
{
rsw
=
(
sqrt
(
rsq
)
-
cut_in_off
)
/
cut_in_diff
;
fforce
*=
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
if
(
rsq
>
cut_out_on_sq
)
{
rsw
=
(
sqrt
(
rsq
)
-
cut_out_on
)
/
cut_out_diff
;
fforce
*=
1.0
+
rsw
*
rsw
*
(
2.0
*
rsw
-
3.0
);
}
f
[
i
][
0
]
+=
delx
*
fforce
;
f
[
i
][
1
]
+=
dely
*
fforce
;
f
[
i
][
2
]
+=
delz
*
fforce
;
if
(
newton_pair
||
j
<
nlocal
)
{
f
[
j
][
0
]
-=
delx
*
fforce
;
f
[
j
][
1
]
-=
dely
*
fforce
;
f
[
j
][
2
]
-=
delz
*
fforce
;
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
compute_outer
(
int
eflag
,
int
vflag
)
{
int
i
,
j
,
k
,
numneigh
,
itype
,
jtype
,
itable
;
double
qtmp
,
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
,
fraction
,
table
;
double
r
,
r2inv
,
r6inv
,
forcecoul
,
forcelj
,
fforce
,
factor_coul
,
factor_lj
;
double
grij
,
expm2
,
prefactor
,
t
,
erfc
;
double
factor
,
phicoul
,
philj
;
double
rsw
;
int
*
neighs
;
float
rsq
;
int
*
int_rsq
=
(
int
*
)
&
rsq
;
eng_vdwl
=
eng_coul
=
0.0
;
if
(
vflag
)
for
(
i
=
0
;
i
<
6
;
i
++
)
virial
[
i
]
=
0.0
;
double
**
f
=
atom
->
f
;
double
**
x
=
atom
->
x
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
double
cut_in_off
=
cut_respa
[
2
];
double
cut_in_on
=
cut_respa
[
3
];
double
cut_in_diff
=
cut_in_on
-
cut_in_off
;
double
cut_in_off_sq
=
cut_in_off
*
cut_in_off
;
double
cut_in_on_sq
=
cut_in_on
*
cut_in_on
;
// loop over neighbors of my atoms
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
{
qtmp
=
q
[
i
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
neighs
=
neighbor
->
firstneigh
[
i
];
numneigh
=
neighbor
->
numneigh
[
i
];
for
(
k
=
0
;
k
<
numneigh
;
k
++
)
{
j
=
neighs
[
k
];
if
(
j
<
nall
)
factor_coul
=
factor_lj
=
1.0
;
else
{
factor_coul
=
special_coul
[
j
/
nall
];
factor_lj
=
special_lj
[
j
/
nall
];
j
%=
nall
;
}
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
jtype
=
type
[
j
];
if
(
rsq
<
cutsq
[
itype
][
jtype
])
{
r2inv
=
1.0
/
rsq
;
if
(
rsq
<
cut_coulsq
)
{
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
r
=
sqrtf
(
rsq
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
t
=
1.0
/
(
1.0
+
EWALD_P
*
grij
);
erfc
=
t
*
(
A1
+
t
*
(
A2
+
t
*
(
A3
+
t
*
(
A4
+
t
*
A5
))))
*
expm2
;
prefactor
=
qqrd2e
*
qtmp
*
q
[
j
]
/
r
;
forcecoul
=
prefactor
*
(
erfc
+
EWALD_F
*
grij
*
expm2
-
1.0
);
if
(
rsq
>
cut_in_off_sq
)
{
if
(
rsq
<
cut_in_on_sq
)
{
rsw
=
(
r
-
cut_in_off
)
/
cut_in_diff
;
forcecoul
+=
prefactor
*
rsw
*
rsw
*
(
3
-
2
*
rsw
);
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
*
rsw
*
rsw
*
(
3
-
2
*
rsw
);
}
else
{
forcecoul
+=
prefactor
;
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
}
}
else
{
itable
=
*
int_rsq
&
ncoulmask
;
itable
>>=
ncoulshiftbits
;
fraction
=
(
rsq
-
rtable
[
itable
])
*
drtable
[
itable
];
table
=
ftable
[
itable
]
+
fraction
*
dftable
[
itable
];
forcecoul
=
qtmp
*
q
[
j
]
*
table
;
if
(
factor_coul
<
1.0
)
{
table
=
ctable
[
itable
]
+
fraction
*
dctable
[
itable
];
prefactor
=
qtmp
*
q
[
j
]
*
table
;
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
}
}
else
forcecoul
=
0.0
;
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
]
&&
rsq
>
cut_in_off_sq
)
{
r6inv
=
r2inv
*
r2inv
*
r2inv
;
forcelj
=
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
if
(
rsq
<
cut_in_on_sq
)
{
rsw
=
(
sqrtf
(
rsq
)
-
cut_in_off
)
/
cut_in_diff
;
forcelj
*=
rsw
*
rsw
*
(
3
-
2
*
rsw
);
}
}
else
forcelj
=
0.0
;
fforce
=
(
forcecoul
+
forcelj
)
*
r2inv
;
f
[
i
][
0
]
+=
delx
*
fforce
;
f
[
i
][
1
]
+=
dely
*
fforce
;
f
[
i
][
2
]
+=
delz
*
fforce
;
if
(
newton_pair
||
j
<
nlocal
)
{
f
[
j
][
0
]
-=
delx
*
fforce
;
f
[
j
][
1
]
-=
dely
*
fforce
;
f
[
j
][
2
]
-=
delz
*
fforce
;
}
if
(
eflag
)
{
if
(
newton_pair
||
j
<
nlocal
)
factor
=
1.0
;
else
factor
=
0.5
;
if
(
rsq
<
cut_coulsq
)
{
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
phicoul
=
prefactor
*
erfc
;
if
(
factor_coul
<
1.0
)
phicoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
else
{
table
=
etable
[
itable
]
+
fraction
*
detable
[
itable
];
phicoul
=
qtmp
*
q
[
j
]
*
table
;
if
(
factor_coul
<
1.0
)
{
table
=
ptable
[
itable
]
+
fraction
*
dptable
[
itable
];
prefactor
=
qtmp
*
q
[
j
]
*
table
;
phicoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
}
eng_coul
+=
factor
*
phicoul
;
}
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
r6inv
=
r2inv
*
r2inv
*
r2inv
;
philj
=
r6inv
*
(
lj3
[
itype
][
jtype
]
*
r6inv
-
lj4
[
itype
][
jtype
])
-
offset
[
itype
][
jtype
];
eng_vdwl
+=
factor
*
factor_lj
*
philj
;
}
}
if
(
vflag
)
{
if
(
rsq
<
cut_coulsq
)
{
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
forcecoul
=
prefactor
*
(
erfc
+
EWALD_F
*
grij
*
expm2
);
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
else
{
table
=
vtable
[
itable
]
+
fraction
*
dvtable
[
itable
];
forcecoul
=
qtmp
*
q
[
j
]
*
table
;
if
(
factor_coul
<
1.0
)
{
table
=
ptable
[
itable
]
+
fraction
*
dptable
[
itable
];
prefactor
=
qtmp
*
q
[
j
]
*
table
;
phicoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
}
}
else
forcecoul
=
0.0
;
if
(
rsq
<=
cut_in_off_sq
)
{
r6inv
=
r2inv
*
r2inv
*
r2inv
;
forcelj
=
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
}
else
if
(
rsq
<=
cut_in_on_sq
)
forcelj
=
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
fforce
=
(
forcecoul
+
factor_lj
*
forcelj
)
*
r2inv
;
if
(
newton_pair
||
j
<
nlocal
)
{
virial
[
0
]
+=
delx
*
delx
*
fforce
;
virial
[
1
]
+=
dely
*
dely
*
fforce
;
virial
[
2
]
+=
delz
*
delz
*
fforce
;
virial
[
3
]
+=
delx
*
dely
*
fforce
;
virial
[
4
]
+=
delx
*
delz
*
fforce
;
virial
[
5
]
+=
dely
*
delz
*
fforce
;
}
else
{
virial
[
0
]
+=
0.5
*
delx
*
delx
*
fforce
;
virial
[
1
]
+=
0.5
*
dely
*
dely
*
fforce
;
virial
[
2
]
+=
0.5
*
delz
*
delz
*
fforce
;
virial
[
3
]
+=
0.5
*
delx
*
dely
*
fforce
;
virial
[
4
]
+=
0.5
*
delx
*
delz
*
fforce
;
virial
[
5
]
+=
0.5
*
dely
*
delz
*
fforce
;
}
}
}
}
}
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ntypes
;
setflag
=
memory
->
create_2d_int_array
(
n
+
1
,
n
+
1
,
"pair:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
for
(
int
j
=
i
;
j
<=
n
;
j
++
)
setflag
[
i
][
j
]
=
0
;
cutsq
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:cutsq"
);
cut_lj
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:cut_lj"
);
cut_ljsq
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:cut_ljsq"
);
epsilon
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:epsilon"
);
sigma
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:sigma"
);
lj1
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:lj1"
);
lj2
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:lj2"
);
lj3
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:lj3"
);
lj4
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:lj4"
);
offset
=
memory
->
create_2d_double_array
(
n
+
1
,
n
+
1
,
"pair:offset"
);
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
settings
(
int
narg
,
char
**
arg
)
{
if
(
narg
<
1
||
narg
>
2
)
error
->
all
(
"Illegal pair_style command"
);
cut_lj_global
=
atof
(
arg
[
0
]);
if
(
narg
==
1
)
cut_coul
=
cut_lj_global
;
else
cut_coul
=
atof
(
arg
[
1
]);
// reset cutoffs that have been explicitly set
if
(
allocated
)
{
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
+
1
;
j
<=
atom
->
ntypes
;
j
++
)
if
(
setflag
[
i
][
j
])
cut_lj
[
i
][
j
]
=
cut_lj_global
;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
<
4
||
narg
>
5
)
error
->
all
(
"Incorrect args for pair coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
,
jlo
,
jhi
;
force
->
bounds
(
arg
[
0
],
atom
->
ntypes
,
ilo
,
ihi
);
force
->
bounds
(
arg
[
1
],
atom
->
ntypes
,
jlo
,
jhi
);
double
epsilon_one
=
atof
(
arg
[
2
]);
double
sigma_one
=
atof
(
arg
[
3
]);
double
cut_lj_one
=
cut_lj_global
;
if
(
narg
==
5
)
cut_lj_one
=
atof
(
arg
[
4
]);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
for
(
int
j
=
MAX
(
jlo
,
i
);
j
<=
jhi
;
j
++
)
{
epsilon
[
i
][
j
]
=
epsilon_one
;
sigma
[
i
][
j
]
=
sigma_one
;
cut_lj
[
i
][
j
]
=
cut_lj_one
;
setflag
[
i
][
j
]
=
1
;
count
++
;
}
}
if
(
count
==
0
)
error
->
all
(
"Incorrect args for pair coefficients"
);
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double
PairLJCutCoulLong
::
init_one
(
int
i
,
int
j
)
{
if
(
setflag
[
i
][
j
]
==
0
)
{
epsilon
[
i
][
j
]
=
mix_energy
(
epsilon
[
i
][
i
],
epsilon
[
j
][
j
],
sigma
[
i
][
i
],
sigma
[
j
][
j
]);
sigma
[
i
][
j
]
=
mix_distance
(
sigma
[
i
][
i
],
sigma
[
j
][
j
]);
cut_lj
[
i
][
j
]
=
mix_distance
(
cut_lj
[
i
][
i
],
cut_lj
[
j
][
j
]);
}
double
cut
=
MAX
(
cut_lj
[
i
][
j
],
cut_coul
);
cut_ljsq
[
i
][
j
]
=
cut_lj
[
i
][
j
]
*
cut_lj
[
i
][
j
];
lj1
[
i
][
j
]
=
48.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
12.0
);
lj2
[
i
][
j
]
=
24.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
6.0
);
lj3
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
12.0
);
lj4
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
6.0
);
if
(
offset_flag
)
{
double
ratio
=
sigma
[
i
][
j
]
/
cut_lj
[
i
][
j
];
offset
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
(
pow
(
ratio
,
12.0
)
-
pow
(
ratio
,
6.0
));
}
else
offset
[
i
][
j
]
=
0.0
;
cut_ljsq
[
j
][
i
]
=
cut_ljsq
[
i
][
j
];
lj1
[
j
][
i
]
=
lj1
[
i
][
j
];
lj2
[
j
][
i
]
=
lj2
[
i
][
j
];
lj3
[
j
][
i
]
=
lj3
[
i
][
j
];
lj4
[
j
][
i
]
=
lj4
[
i
][
j
];
offset
[
j
][
i
]
=
offset
[
i
][
j
];
// compute I,J contribution to long-range tail correction
// count total # of atoms of type I and J via Allreduce
if
(
tail_flag
)
{
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
count
[
2
],
all
[
2
];
count
[
0
]
=
count
[
1
]
=
0.0
;
for
(
int
k
=
0
;
k
<
nlocal
;
k
++
)
{
if
(
type
[
k
]
==
i
)
count
[
0
]
+=
1.0
;
if
(
type
[
k
]
==
j
)
count
[
1
]
+=
1.0
;
}
MPI_Allreduce
(
count
,
all
,
2
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
double
PI
=
4.0
*
atan
(
1.0
);
double
sig2
=
sigma
[
i
][
j
]
*
sigma
[
i
][
j
];
double
sig6
=
sig2
*
sig2
*
sig2
;
double
rc3
=
cut_lj
[
i
][
j
]
*
cut_lj
[
i
][
j
]
*
cut_lj
[
i
][
j
];
double
rc6
=
rc3
*
rc3
;
double
rc9
=
rc3
*
rc6
;
etail_ij
=
8.0
*
PI
*
all
[
0
]
*
all
[
1
]
*
epsilon
[
i
][
j
]
*
sig6
*
(
sig6
-
3.0
*
rc6
)
/
(
9.0
*
rc9
);
ptail_ij
=
16.0
*
PI
*
all
[
0
]
*
all
[
1
]
*
epsilon
[
i
][
j
]
*
sig6
*
(
2.0
*
sig6
-
3.0
*
rc6
)
/
(
9.0
*
rc9
);
}
return
cut
;
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
init_style
()
{
int
i
,
j
;
// require an atom style with charge defined
if
(
atom
->
charge_allow
==
0
)
error
->
all
(
"Must use charged atom style with this pair style"
);
cut_coulsq
=
cut_coul
*
cut_coul
;
// set & error check interior rRESPA cutoffs
if
(
strcmp
(
update
->
integrate_style
,
"respa"
)
==
0
)
{
if
(((
Respa
*
)
update
->
integrate
)
->
level_inner
>=
0
)
{
cut_respa
=
((
Respa
*
)
update
->
integrate
)
->
cutoff
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
if
(
MIN
(
cut_lj
[
i
][
j
],
cut_coul
)
<
cut_respa
[
3
])
error
->
all
(
"Pair cutoff < Respa interior cutoff"
);
}
}
else
cut_respa
=
NULL
;
// insure use of KSpace long-range solver, set g_ewald
if
(
force
->
kspace
==
NULL
)
error
->
all
(
"Pair style is incompatible with KSpace style"
);
else
if
(
strcmp
(
force
->
kspace_style
,
"ewald"
)
==
0
)
g_ewald
=
force
->
kspace
->
g_ewald
;
else
if
(
strcmp
(
force
->
kspace_style
,
"pppm"
)
==
0
)
g_ewald
=
force
->
kspace
->
g_ewald
;
else
error
->
all
(
"Pair style is incompatible with KSpace style"
);
// setup force tables
if
(
ncoultablebits
)
init_tables
();
}
/* ----------------------------------------------------------------------
setup force tables used in compute routines
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
init_tables
()
{
int
masklo
,
maskhi
;
double
r
,
grij
,
expm2
,
derfc
,
rsw
;
double
qqrd2e
=
force
->
qqrd2e
;
tabinnersq
=
tabinner
*
tabinner
;
init_bitmap
(
tabinner
,
cut_coul
,
ncoultablebits
,
masklo
,
maskhi
,
ncoulmask
,
ncoulshiftbits
);
int
ntable
=
1
;
for
(
int
i
=
0
;
i
<
ncoultablebits
;
i
++
)
ntable
*=
2
;
// linear lookup tables of length N = 2^ncoultablebits
// stored value = value at lower edge of bin
// d values = delta from lower edge to upper edge of bin
if
(
ftable
)
free_tables
();
rtable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:rtable"
);
ftable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:ftable"
);
ctable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:ctable"
);
etable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:etable"
);
drtable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:drtable"
);
dftable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:dftable"
);
dctable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:dctable"
);
detable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:detable"
);
if
(
cut_respa
==
NULL
)
{
vtable
=
ptable
=
dvtable
=
dptable
=
NULL
;
}
else
{
vtable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:vtable"
);
ptable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:ptable"
);
dvtable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:dvtable"
);
dptable
=
(
double
*
)
memory
->
smalloc
(
ntable
*
sizeof
(
double
),
"pair:dptable"
);
}
float
rsq
;
int
*
int_rsq
=
(
int
*
)
&
rsq
;
float
minrsq
;
int
*
int_minrsq
=
(
int
*
)
&
minrsq
;
int
itablemin
;
*
int_minrsq
=
0
<<
ncoulshiftbits
;
*
int_minrsq
=
*
int_minrsq
|
maskhi
;
for
(
int
i
=
0
;
i
<
ntable
;
i
++
)
{
*
int_rsq
=
i
<<
ncoulshiftbits
;
*
int_rsq
=
*
int_rsq
|
masklo
;
if
(
rsq
<
tabinnersq
)
{
*
int_rsq
=
i
<<
ncoulshiftbits
;
*
int_rsq
=
*
int_rsq
|
maskhi
;
}
r
=
sqrtf
(
rsq
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
derfc
=
erfc
(
grij
);
if
(
cut_respa
==
NULL
)
{
rtable
[
i
]
=
rsq
;
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
ctable
[
i
]
=
qqrd2e
/
r
;
etable
[
i
]
=
qqrd2e
/
r
*
derfc
;
}
else
{
rtable
[
i
]
=
rsq
;
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
-
1.0
);
ctable
[
i
]
=
0.0
;
etable
[
i
]
=
qqrd2e
/
r
*
derfc
;
ptable
[
i
]
=
qqrd2e
/
r
;
vtable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
if
(
rsq
>
cut_respa
[
2
]
*
cut_respa
[
2
])
{
if
(
rsq
<
cut_respa
[
3
]
*
cut_respa
[
3
])
{
rsw
=
(
r
-
cut_respa
[
2
])
/
(
cut_respa
[
3
]
-
cut_respa
[
2
]);
ftable
[
i
]
+=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
ctable
[
i
]
=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
else
{
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
ctable
[
i
]
=
qqrd2e
/
r
;
}
}
}
minrsq
=
MIN
(
minrsq
,
rsq
);
}
tabinnersq
=
minrsq
;
int
ntablem1
=
ntable
-
1
;
for
(
int
i
=
0
;
i
<
ntablem1
;
i
++
)
{
drtable
[
i
]
=
1.0
/
(
rtable
[
i
+
1
]
-
rtable
[
i
]);
dftable
[
i
]
=
ftable
[
i
+
1
]
-
ftable
[
i
];
dctable
[
i
]
=
ctable
[
i
+
1
]
-
ctable
[
i
];
detable
[
i
]
=
etable
[
i
+
1
]
-
etable
[
i
];
}
if
(
cut_respa
)
{
for
(
int
i
=
0
;
i
<
ntablem1
;
i
++
)
{
dvtable
[
i
]
=
vtable
[
i
+
1
]
-
vtable
[
i
];
dptable
[
i
]
=
ptable
[
i
+
1
]
-
ptable
[
i
];
}
}
// get the delta values for the last table entries
// tables are connected periodically between 0 and ntablem1
drtable
[
ntablem1
]
=
1.0
/
(
rtable
[
0
]
-
rtable
[
ntablem1
]);
dftable
[
ntablem1
]
=
ftable
[
0
]
-
ftable
[
ntablem1
];
dctable
[
ntablem1
]
=
ctable
[
0
]
-
ctable
[
ntablem1
];
detable
[
ntablem1
]
=
etable
[
0
]
-
etable
[
ntablem1
];
if
(
cut_respa
)
{
dvtable
[
ntablem1
]
=
vtable
[
0
]
-
vtable
[
ntablem1
];
dptable
[
ntablem1
]
=
ptable
[
0
]
-
ptable
[
ntablem1
];
}
// get the correct delta values at itablemax
// smallest r is in bin itablemin
// largest r is in bin itablemax, which is itablemin-1,
// or ntablem1 if itablemin=0
// deltas at itablemax only needed if corresponding rsq < cut*cut
// if so, compute deltas between rsq and cut*cut
double
f_tmp
,
c_tmp
,
e_tmp
,
p_tmp
,
v_tmp
;
itablemin
=
*
int_minrsq
&
ncoulmask
;
itablemin
>>=
ncoulshiftbits
;
int
itablemax
=
itablemin
-
1
;
if
(
itablemin
==
0
)
itablemax
=
ntablem1
;
*
int_rsq
=
itablemax
<<
ncoulshiftbits
;
*
int_rsq
=
*
int_rsq
|
maskhi
;
if
(
rsq
<
cut_coulsq
)
{
rsq
=
cut_coulsq
;
r
=
sqrtf
(
rsq
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
derfc
=
erfc
(
grij
);
if
(
cut_respa
==
NULL
)
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
c_tmp
=
qqrd2e
/
r
;
e_tmp
=
qqrd2e
/
r
*
derfc
;
}
else
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
-
1.0
);
c_tmp
=
0.0
;
e_tmp
=
qqrd2e
/
r
*
derfc
;
p_tmp
=
qqrd2e
/
r
;
v_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
if
(
rsq
>
cut_respa
[
2
]
*
cut_respa
[
2
])
{
if
(
rsq
<
cut_respa
[
3
]
*
cut_respa
[
3
])
{
rsw
=
(
r
-
cut_respa
[
2
])
/
(
cut_respa
[
3
]
-
cut_respa
[
2
]);
f_tmp
+=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
c_tmp
=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
else
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
c_tmp
=
qqrd2e
/
r
;
}
}
}
drtable
[
itablemax
]
=
1.0
/
(
rsq
-
rtable
[
itablemax
]);
dftable
[
itablemax
]
=
f_tmp
-
ftable
[
itablemax
];
dctable
[
itablemax
]
=
c_tmp
-
ctable
[
itablemax
];
detable
[
itablemax
]
=
e_tmp
-
etable
[
itablemax
];
if
(
cut_respa
)
{
dvtable
[
itablemax
]
=
v_tmp
-
vtable
[
itablemax
];
dptable
[
itablemax
]
=
p_tmp
-
ptable
[
itablemax
];
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
write_restart
(
FILE
*
fp
)
{
write_restart_settings
(
fp
);
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
fwrite
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
if
(
setflag
[
i
][
j
])
{
fwrite
(
&
epsilon
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
sigma
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
cut_lj
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
read_restart
(
FILE
*
fp
)
{
read_restart_settings
(
fp
);
allocate
();
int
i
,
j
;
int
me
=
comm
->
me
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
if
(
me
==
0
)
fread
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
MPI_Bcast
(
&
setflag
[
i
][
j
],
1
,
MPI_INT
,
0
,
world
);
if
(
setflag
[
i
][
j
])
{
if
(
me
==
0
)
{
fread
(
&
epsilon
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
sigma
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
cut_lj
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
MPI_Bcast
(
&
epsilon
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
sigma
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
cut_lj
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
write_restart_settings
(
FILE
*
fp
)
{
fwrite
(
&
cut_lj_global
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
cut_coul
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fwrite
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
read_restart_settings
(
FILE
*
fp
)
{
if
(
comm
->
me
==
0
)
{
fread
(
&
cut_lj_global
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
cut_coul
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fread
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
}
MPI_Bcast
(
&
cut_lj_global
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
cut_coul
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
offset_flag
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
&
mix_flag
,
1
,
MPI_INT
,
0
,
world
);
}
/* ----------------------------------------------------------------------
free memory for tables used in pair computations
------------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
free_tables
()
{
memory
->
sfree
(
rtable
);
memory
->
sfree
(
drtable
);
memory
->
sfree
(
ftable
);
memory
->
sfree
(
dftable
);
memory
->
sfree
(
ctable
);
memory
->
sfree
(
dctable
);
memory
->
sfree
(
etable
);
memory
->
sfree
(
detable
);
memory
->
sfree
(
vtable
);
memory
->
sfree
(
dvtable
);
memory
->
sfree
(
ptable
);
memory
->
sfree
(
dptable
);
}
/* ---------------------------------------------------------------------- */
void
PairLJCutCoulLong
::
single
(
int
i
,
int
j
,
int
itype
,
int
jtype
,
double
rsq
,
double
factor_coul
,
double
factor_lj
,
int
eflag
,
One
&
one
)
{
double
r2inv
,
r6inv
,
r
,
grij
,
expm2
,
t
,
erfc
,
prefactor
;
double
fraction
,
table
,
forcecoul
,
forcelj
,
phicoul
,
philj
;
int
itable
;
r2inv
=
1.0
/
rsq
;
if
(
rsq
<
cut_coulsq
)
{
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
r
=
sqrt
(
rsq
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
t
=
1.0
/
(
1.0
+
EWALD_P
*
grij
);
erfc
=
t
*
(
A1
+
t
*
(
A2
+
t
*
(
A3
+
t
*
(
A4
+
t
*
A5
))))
*
expm2
;
prefactor
=
force
->
qqrd2e
*
atom
->
q
[
i
]
*
atom
->
q
[
j
]
/
r
;
forcecoul
=
prefactor
*
(
erfc
+
EWALD_F
*
grij
*
expm2
);
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
else
{
float
rsq_single
=
rsq
;
int
*
int_rsq
=
(
int
*
)
&
rsq_single
;
itable
=
*
int_rsq
&
ncoulmask
;
itable
>>=
ncoulshiftbits
;
fraction
=
(
rsq_single
-
rtable
[
itable
])
*
drtable
[
itable
];
table
=
ftable
[
itable
]
+
fraction
*
dftable
[
itable
];
forcecoul
=
atom
->
q
[
i
]
*
atom
->
q
[
j
]
*
table
;
if
(
factor_coul
<
1.0
)
{
table
=
ctable
[
itable
]
+
fraction
*
dctable
[
itable
];
prefactor
=
atom
->
q
[
i
]
*
atom
->
q
[
j
]
*
table
;
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
}
}
else
forcecoul
=
0.0
;
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
r6inv
=
r2inv
*
r2inv
*
r2inv
;
forcelj
=
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
}
else
forcelj
=
0.0
;
one
.
fforce
=
(
forcecoul
+
factor_lj
*
forcelj
)
*
r2inv
;
if
(
eflag
)
{
if
(
rsq
<
cut_coulsq
)
{
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
phicoul
=
prefactor
*
erfc
;
else
{
table
=
etable
[
itable
]
+
fraction
*
detable
[
itable
];
phicoul
=
atom
->
q
[
i
]
*
atom
->
q
[
j
]
*
table
;
}
if
(
factor_coul
<
1.0
)
phicoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
one
.
eng_coul
=
phicoul
;
}
else
one
.
eng_coul
=
0.0
;
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
philj
=
r6inv
*
(
lj3
[
itype
][
jtype
]
*
r6inv
-
lj4
[
itype
][
jtype
])
-
offset
[
itype
][
jtype
];
one
.
eng_vdwl
=
factor_lj
*
philj
;
}
else
one
.
eng_vdwl
=
0.0
;
}
}
Event Timeline
Log In to Comment