Moltemplate Manual

Andrew Jewett, Shea Lab
University of California Santa Barbara
Santa Barbara, CA 93106
jewett.aij@gmail.com

August 17, 2015

Contents

1 Introduction 3
1.1 Converting $L T$ files to LAMMPS input/data files 4
1.2 Converting LAMMPS input/data files to LT files 4
2 Installation 5
3 Quick reference (skip on first reading) 6
3.1 Moltemplate commands 6
3.2 Common \$ and @ variables 9
3.3 Coordinate transformations 10
3.4 moltemplate.sh command line arguments: 11
4 Introductory tutorial 12
4.1 Simulating a box of water using moltemplate and LAMMPS. 12
4.2 Coordinate generation 15
4.3 Visualization using VMD \& topotools 16
4.4 Running a LAMMPS simulation (after using moltemplate). 17
4.5 Visualizing Trajectories 19
5 Overview 19
5.1 Basics: The write() and write_once() commands 19
5.2 Basics: counter variables 20
5.2.1 Static counters begin with "Q" 20
5.2.2 Instance counters begin with " $\$$ " 20
5.2.3 Variable names: short-names vs. full-names 21
5.2.4 Numeric substitution. 21
5.2.5 Variable scope 21
5.3 Troubleshooting using the output_ttree directory 21
5.4 "Data" and "In" 22
5.5 (Advanced) Using moltemplate to generate auxiliary files 22
5.6 (Advanced) Making custom DATA sections 23
5.7 Details/Comments 23
6 Object composition and coordinate generation 24
6.1 Building a large molecule from smaller pieces 24
6.1.1 Building a simple polymer 27
6.1.2 Sharing atom, bond and angle types 28
6.2 Bonded interactions by type 28
7 Arrays, slices, and coordinate transformations 28
7.1 Transformations following brackets [] in a new statement 29
7.2 Transformations following instantiation 29
7.3 Transformation order (general case) 30
7.4 Random arrays 30
7.4.1 Random arrays with exact molecule type counts 31
$\left.7.5 \quad{ }^{*}\right]$ and $[\mathrm{i}-\mathrm{j}]$ slice notation 32
7.5.1 Building arrays one interval at a time (using slice no- tation) 32
7.6 Multidimensional arrays 33
7.7 Customizing individual rows, columns, or layers 33
7.8 Creating random mixtures using multidimensional arrays 34
7.9 Inserting random vacancies 34
7.9.1 Random multidimensional arrays with exact type counts 35
7.10 Cutting rectangular holes using delete 35
8 Customizing molecule position and topology 35
8.1 Customizing individual atom locations 37
8.2 Adding bonds and angles to individual molecules 37
8.3 The delete command 37
8.3.1 Deleting molecules or molecular subunits 37
8.3.2 Deleting atoms, bonds, angles, dihedrals, and impropers 37
8.4 Customizing molecule types 38
9 Portability: Using LT files for force-field storage 40
9.1 Mixing molecule types 40
9.2 Combining molecules with different force field styles 42
9.3 Nesting 42
9.4 A simple force-field example 43
9.4.1 Namespace example 44
9.5 Nested molecules 45
9.6 Path syntax: "../", ".../", and "\$mol:." 46
9.6.1 (Advanced) Ellipsis notation ".../" 46
9.6.2 (Advanced) \$mol:... notation 46
9.7 using namespace syntax 47
9.8 Inheritance 48
9.8.1 Multiple inheritance: 48
9.8.2 Inheritance vs. Nesting 48
9.8.3 Inheritance vs. Object Composition 49
9.9 Warning: Use "pair_coeffs" not "Pair Coeffs" 49
10 Known bugs and limitations 50
A Bonded interactions "By Type" 52
B Using ltemplify.py to create an LT file 53
B. 1 Examples 54
B. 2 Fixes and Groups 54
B. 3 DATA files containing "Coeffs" 55
B. 4 Limitations of ltemplify.py 55
C Visualization in VMD 56
C. 1 Customizing the appearance in VMD 56
C. 2 Visualizing periodic boundaries 57
D Advanced moltemplate.sh Usage 58
D. 1 Manual variables assignment ("-a" or "-b") 59
D. 2 Customizing the counting method using category 61
D. 3 Creating local independent counters 61
D. 4 Counting order 62
E Using lttree.py or ttree.py directly 63
E. 1 First run ttree.py 63
E. 2 Then create a LAMMPS data file 64
E. 3 Now create the LAMMPS input script 65
E. 4 Extract coordinates. 65
E. 5 Convert the coordinate file to LAMMPS input script format 66
F Using the nbody_by_type.py utility 66
F. 1 Usage 67
F. 2 Custom bond topologies 70
G Variable syntax details 70
G. 1 General variable syntax 71
G. 2 Variable shorthand equivalents 71

1 Introduction

Moltemplate is a general molecule builder and force-field database system for LAMMPS. A simple file format has been created to store molecule definitions and force-fields (the LAMMPS-template format, LT). LT files are templates containing all of the text relevant to a particular molecule (including coordinates, bond-topology, angles, force-field parameters, constraints, groups and fixes). Moltemplate can then duplicate the molecule, customize it, and use it as a building-block for constructing larger, more complex molecules. (These molecules can be used to build even larger molecules.) Once built, individual molecules and subunits can be customized (atoms and bonds, and subunits can be inserted, moved, deleted and/or replaced).

Popular force-fields such as AMBER GAFF and OPLS-AA have been converted into LT format, allowing users to quickly create molecules using moltemplate. (With help, more popular force-fields can be converted.) This way moltemplate users can build a molecule by specifying only a list of atoms
in the molecule and the bonds connecting them. End-users are not required to manually specify all of the force-field parameters. However they still have the freedom to easily customize individual interactions when needed.

Moltemplate is extremely flexible. It supports all LAMMPS force-field styles and nearly all atom-styles (now and in the future).

Moltemplate requires the Bourne-shell, and a recent version of python (2.7 or 3.0 or higher), and can run on OS X, linux, or windows (if a suitable shell environment has been installed). A substantial amount of memory is needed to run moltemplate. For example, building a system of 1000000 atoms typically requires between 3 and 12 GB of available memory. (This depends on the number of bonds, molecules, and angular interactions. See section 10 for details.)

1.1 Converting LT files to LAMMPS input/data files

The moltemplate.sh program converts LT-files (which contain molecule definitions) into complete LAMMPS input-scripts and data-files:

```
moltemplate.sh -atomstyle "full" system.lt
or
moltemplate.sh -xyz coords.xyz -atomstyle "full" -vmd system.lt
```

In the first example, the coordinates of the atoms in the system are built from commands inside the "system.lt" file. In the second example coordinates for the atoms are read from an XYZ-file, and then invokes VMD to visualize the system just created. (PDB-files and other coordinate formats are also supported. Note: The "full" atom style was used in this example, but other LAMMPS atom styles are supported, including hybrid styles.)

Either of these commands will construct a LAMMPS data file and a LAMMPS input script (and possibly one or more auxiliary input files), which can be directly run in LAMMPS with minimal editing.

1.2 Converting LAMMPS input/data files to LT files

Existing LAMMPS input/data files can be converted into ".LT" files using the "ltemplify.py" utility. (Some additional manual editing may be required. See appendix B.)

Additional tools

The VMD topotools plugin [1] is useful for converting PDB files into LAMMPS format. These files can then be converted to "LT" format using the "ltemplify.py" utility. VMD [2] and topotools are also useful for visualizing the data files created by moltemplate.sh (See section 4.3.)

The PACKMOL [3] program is useful for generating coordinates of dense heterogeneous mixtures of molecules, which can be read by moltemplate. (The VMD "solvate" plugin may also be helpful.)

Online examples

This manual explains in detail how to use moltemplate.sh to build LAMMPS files from scratch. You will also need to learn how to run LAMMPS and visualize your results. Section 4 contains a brief tutorial which explains how to build a box of water using moltemplate and visualize initial conformation, run LAMMPS, and then visualize the trajectory. In addition, many complete working examples (with images and readme files) are available online (at http://moltemplate.org) which can be downloaded and modified. (These examples are also located in the "tools/moltemplate/examples" subdirectory bundled with LAMMPS.) These examples are a good starting point for learning LAMMPS and moltemplate.

License

Moltemplate.sh is publicly available at http://moltemplate.org under the terms of the open-source 3-clause BSD license. http://www.opensource. org/licenses/BSD-3-Clause

2 Installation

If you don't already have moltemplate, the first step of the installation is to download and unpack the moltemplate archive. The most up-to-date version of moltemplate can always be downloaded at: http://www.moltemplate. org and unpacked using:
tar xzf moltemplate_2012-3-31.tar.gz
(The date will vary from version to version.) Alternately, if you obtained moltemplate bundled with LAMMPS, then the "moltemplate" directory will probably be located in the "tools" subdirectory of your lammps installation.

If necessary, move the "moltemplate" directory to its desired location. (For the sake of this example, let's assume you move it to: "\$HOME/moltemplate".)

The "moltemplate.sh" script and the python scripts it invokes are located in the "src" subdirectory. You should update your PATH environment variable to include this directory. You also need to set your MOLTEMPLATE_PATH environment variable to point to the "common" subdirectory. (Force fields and commonly used molecules will eventually be located here.)

If you use the bash shell, typically you would edit your $\sim /$. bash_profile, $\sim /$.bashrc, or $\sim /$.profile files to contain the following lines:

```
export PATH="$PATH:$HOME/moltemplate/src"
export MOLTEMPLATE_PATH="$HOME/moltemplate/common"
```

If you use the tcsh shell, typically you would edit your $\sim / . \operatorname{login}, \sim /$. cshre, or $\sim /$.tcshrc files to contain the following lines:

```
setenv PATH "$PATH:$HOME/moltemplate/src"
setenv MOLTEMPLATE_PATH "$HOME/moltemplate/common"
```

Note: You may need to log out and then log back in again for the changes to take effect.

3 Quick reference (skip on first reading)

Note: New users should skip to section 4

3.1 Moltemplate commands

command	meaning
$\begin{aligned} & \text { MolType \{ } \\ & \text { content ... } \\ & \} \end{aligned}$	Define a new type of molecule (or namespace) named MolType. The text enclosed in curly brackets (content) typically contains multiple write(), write_once() commands to define Atoms, Bonds, Angles, Coeffs, etc... (If that molecule type exists already, then this will append additional content to its definition.) new and delete commands can be used to create or delete molecular subunits within this molecule. (See the SPCE, 2bead, and Butane molecules, and the TraPPE namespace defined in sections 4.1, 6.1, 9.8, \& 9.4.1.
mol_name $=$ new MolType	Create (instantiate) a copy of a molecule of type MolType and name it mol_name. (See section 4.1.)
mol_name $=$ new MolType.xform()	Create a copy of a molecule and apply coordinate transformation xform() to its coordinates. (See sections 4.2 and 3.3 .)
molecules $=$ new MolType [N].xform()	Create N copies of a molecule of type MolType and name them molecules[0], molecules[1], molecules[2]... Coordinates in each successive copy are cumulatively transformed according to xform(). (See sections 4.2, 7.1 and 3.3 .) Multidimensional arrays are also allowed. (See section 7.6.)
molecules $=$ new MolType.xform1() [N].xform2()	Apply coordinate transformations (xform1() to MolType, before making N copies of it while cumulatively applying xform2(). (See section 7.1 and 7.3.)
$\begin{gathered} \hline \text { molecules }=\text { new } \\ \text { random }([M 1 . x f 1(), \\ M 2 . x f 2(), \\ M 3 . x f 2(), \ldots], \\ {\left[p_{1}, p_{2}, p_{3}, \ldots\right],} \\ \text { seed }) \\ {[\mathbf{N}] . x \text { form }()} \end{gathered}$	Generate an array of N molecules randomly selected from M1,M2,M3, \ldots with probabilities $p_{1}, p_{2}, p_{3} \ldots$, using (optional) initial coordinate transformations xf1(), $x f 2(), x f 3, \ldots$, and applying transformation x form() cumulatively thereafter. This also works with multidimensional arrays. You can directly specify the number of each type of molecule by replacing the list of probabilities [$p_{1}, p_{2}, p_{3} \ldots$], with a list of integers [$\left.n_{1}, n_{2}, n_{3} \ldots\right]$. (See sections 7.4 and 7.8.)
NewMol $=$ OldMol	Create a new molecule type based on an existing molecule type. Additional atoms (or bonds, etc...) can be added later to the new molecule using NewMol \{more content...\}. (See section 8.4.)
NewMol $=$ OldMol.xform()	Create a new molecule type based on an existing molecule type, and apply coordinate transformation x form() to it. (See section 8.4.)

$\left.\begin{array}{l|l}\hline \text { NewMol inherits Mol1 Mol2 ... }\left\{\begin{array}{l}\text { Create a new molecule type based on multiple exist- } \\ \text { additional content ... } \\ \text { ing molecule types. Atom types, bond types, angle }\end{array}\right. \\ \text { \} } & \\ \text { types (etc) which are defined in Mol1, or Mol2, ... are } \\ \text { available inside the new molecule. Additional content } \\ \text { (including more write() or write_once() or new com- } \\ \text { mands) follows within the curly brackets. (See sections }\end{array}\right\}$
\(\left.$$
\begin{array}{l|l}\hline \begin{array}{l}\text { category } \$ \text { catname }\left(i_{0}, \Delta\right) \\
\text { or } \\
\text { category @catname }\left(i_{0}, \Delta\right)\end{array} & \begin{array}{l}\text { Create a new variable category. See section D.2 for } \\
\text { details. }\end{array} \\
\hline \text { create_var }\{\text { \$variable \} } & \begin{array}{l}\text { Create a counter-variable specific to this molecule ob- } \\
\text { ject. (Typically this is used to create molecule-ID }\end{array}
$$

numbers, for a molecule built from smaller compo-

nents. See section 6.1.1, Note: "create_var" does not

work with @-style variables..)\end{array}\right]\)	All text following a "\#" character is treated as a
comment and ignored (by both moltemplate.sh and	
LAMMPS).	

3.2 Common \$ and @ variables

(See section 5.2 for details.) variable type	meaning
\$atom:name	A unique ID number assigned to atom name in this molecule. (Note: The :name suffix can be omitted if the molecule in which this variable appears only contains a single atom.)
@atom:type	A number which indicates an atom's type (typically used to lookup pair interactions.)
\$bond:name	A unique ID number assigned to bond name (Note: The :name suffix can be omitted if the molecule in which this variable appears only contains a single bond.)
@bond:type	A number which indicates a bond's type
\$angle:name	A unique ID number assigned to angle name (Note: The :name suffix can be omitted if the molecule in which this variable appears only contains a single angle interaction.)
@angle:type	A number which indicates an angle's type
\$dihedral:name	A unique ID number assigned to dihedral name (Note: The :name suffix can be omitted if the molecule in which this variable appears only contains a single dihedral-angle interaction.)
@dihedral:type	A number which indicates a dihedral's type

3.3 Coordinate transformations

(See sections 4.2) and 7.1) for details.)

suffix	meaning
.move (x, y, z)	Add numbers (x, y, z) to the coordinates of every atom
. $\operatorname{rot}(\theta, x, y, z)$	Rotate atom coordinates by angle θ around axis (x, y, z) pass- ing through the origin. (Dipole directions are also rotated.)
. $\operatorname{rot}\left(\theta, x, y, z, x_{0}, y_{0}, z_{0}\right)$	Rotate atom coordinates by angle θ around axis pointing in the direction (x,y,z), passing through the point $\left(x_{0}, y_{0}, z_{0}\right)$. $($ This point will be a fixed point. $)$
. $\operatorname{rotvv}\left(v_{1 x}, v_{1 y}, v_{1 z}, v_{2 x}, v_{2 y}, v_{2 z}\right)$	Rotate atom coordinates with an angle which rotates the vector \mathbf{v}_{1} to \mathbf{v}_{2} (around an axis perpendicular to both \mathbf{v}_{1} and $\left.\mathbf{v}_{2}\right)$. If you supply 3 additional numbers x_{0}, y_{0}, z_{0}, the axis of rotation will pass through this location.
.scale (ratio)	Multiply all atomic coordinates by ratio. (Important: The scale() command does not update force-field parameters such as atomic radii or bond-lengths. Dipole magnitudes are af- fected.)
. scale $\left(x_{r}, y_{r}, z_{r}\right)$	Multiply x, y, z coordinates by x_{r}, y_{r}, z_{r}, respectively
. scale $\left(\right.$ ratio, $\left.x_{0}, y_{0}, z_{0}\right)$ or	You can supply 3 optional additional arguments x_{0}, y_{0}, z_{0} which specify the point around which you want the scaling to occur. (This point will be a fixed point. Of omitted, the origin is used.)
scale $\left(x_{r}, y_{r}, z_{r}, x_{0}, y_{0}, z_{0}\right)$	

Note: Multiple transformations can be chained together into a compound operation.
(For example: ".scale(2.0).rotate (45.2, 1, 0, 0).move (25.0, 0, 0)")
These are evaluated from left-to-right. (See section 7.1.)

3.4 moltemplate.sh command line arguments:

argument	meaning
-atomstyle style	Inform moltemplate which atom_style you are using. (style is "full" by default). Other styles like " molecular" or "hybrid full dipole" are supported. For custom atom styles, you can also specify the list of column names manually. For example: -atomstyle "molid x y z atomid atomtype mux muy muz" Atom styles should be enclosed in quotes (").
-raw coords.raw	Read all of the atomic coordinates from an external RAW file. (RAW files are simple 3-column ASCII files contain X Y Z coordinates for every atom. Numbers are separated by spaces, not commas.)
-xyz coords.xyz	Read all of the atomic coordinates from an external XYZ file (XYZ files are 4-column ascii files in ATOMTYPE X Y Z format. The first column, ATOMTYPE, is skipped. The first line should contain the number of atoms. The second line is skipped. See section 4.2.)
-pdb coords.pdb	Read all of the atomic coordinates from an external PDB file (Periodic boundary conditions are also read, if present. Atoms are sorted by the chainID, resID, insertCode, and ato- mID fields on every line beginning with "ATOM"" or "HET- ATM". This order must match the order that the atoms appear in the data file. See section 4.2.)
-a 'variable value'	Assign variable to value. (The variable should begin with either a @ character or a \$ character. Single-quotes and a space separator are required. See appendix D.1.)
-a bindings_file'	The variables in column 1 of bindings_file (which is a text file) will be assigned to the values in column 2 of that file.
(This is useful when there are many variable assignments to	
make. See appendix D.1.)	

4 Introductory tutorial

Summary

Moltemplate is based on a very simple text generator (wrapper) which repetitively copies short text fragments into one (or more) files and keeps track of various kinds of counters.

LAMMPS is a powerful but complex program with many contributors. Moltemplate is a front-end for LAMMPS. Moltemplate users will have to tackle the same steep learning-curve (and occasional bugs) that other LAMMPS users must face. Moltemplate files (LT files) share the same file format and syntax structure as LAMMPS DATA files and INPUT scripts. Moltemplate will attempt to correct user mistakes, however users must still learn LAMMPS syntax and write LT files which obey it. For users who are new to LAMMPS, the easiest way to do this is to modify an existing example (such as the water box example in this section). (The official LAMMPS documentation http://lamps.sandia.gov/doc/Manual.html is an excellent reference to look up LAMMPS commands you see in these examples that you are not familiar with.)

4.1 Simulating a box of water using moltemplate and LAMMPS

Figure 1: Coordinates of a single water molecule in our example. (Atomic radii not to scale.)

Here we show an example of a lammps-template file for water. (The settings shown here are borrowed from the simple-point-charge 4 SPC/E model.) In addition to coordinates, topology and force-field settings, "LT" files can optionally include any other kind of LAMMPS settings including SHAKE constraints, k-space settings, and even group definitions. (Unicode is supported.)

```
# (NOTE: Text following '#' characters are comments)
#
# file "spce_simple.lt"
#
# H1 H2
# \ /
#
#
SPCE {
```

 \#\# Atom properties and molecular topology go in the various "Data ..." sections
    ```
# We selected "atom_style full". That means we use this column format:
# atomID molID atomType charge coordX coordY coordZ
write("Data Atoms") {
    $atom:0 $mol:. @atom:0 -0.8476 0.0000000 0.000000 0.00000
    $atom:H1 $mol:. @atom:H 0.4238 0.8164904 0.5773590 0.00000
    $atom:H2 $mol:. @atom:H 0.4238 -0.8164904 0.5773590 0.00000
}
# Variables beginning with $ or @ will be replaced by numbers LAMMPS will
# eventually read. Each of the three atoms" will be assigned unique
# atomIDs (denoted here by "$atom:O", "$atom:H1", "$atom:H2"), even if
# they belong to different molecules. However, the atom types
# (denoted "@atom:O", "@atom:H") are shared for atoms in all molecules.
# All 3 atoms share same molID number (represeted here by "$mol:.")
# however that number is different for different water molecules.
write_once("Data Masses") {
    # atomType mass
    @atom:0 15.9994
    @atom:H 1.008
}
write("Data Bonds") {
    # bondID bondType atomID1 atomID2
    $bond:OH1 @bond:OH $atom:O $atom:H1
    $bond:OH2 @bond:OH $atom:O $atom:H2
}
write("Data Angles") {
    # angleID angleType atomID1 atomID2 atomID3
    $angle:HOH @angle:HOH $atom:H1 $atom:O $atom:H2
}
# --- Force-field parameters go in the "In Settings" section: ---
write_once("In Settings") {
    # -- Non-bonded (Pair) interactions --
    # atomType1 atomType2 parameter-list (epsilon, sigma)
    pair_coeff @atom:0 @atom:0 0.1553 3.166
    pair_coeff @atom:H @atom:H 0.0 2.058
    # (mixing rules determine interactions between types @atom:O and @atom:H)
    # -- Bonded interactions --
    # bondType parameter list (k_bond, r0)
    bond_coeff @bond:OH 1000.00 1.0
    # angleType parameter-list (k_theta, theta0)
    angle_coeff @angle:HOH 1000.0 109.47
```

```
    # Group definitions and constraints can also go in the "In Settings" section
    group spce type @atom:O @atom:H
    fix fSHAKE spce shake 0.0001 10 100 b @bond:OH a @angle:HOH
    # (lammps quirk: Remember to "unfix fSHAKE" during minimization.)
    }
    # LAMMPS supports a large number of force-field styles. We must select
    # which ones we need. This information belongs in the "In Init" section.
    write_once("In Init") {
    units real # angstroms, kCal/mole, Daltons, Kelvin
    atom_style full # select column format for Atoms section
    pair_style lj/charmm/coul/long 9.0 10.0 10 # params needed: epsilon sigma
    bond_style harmonic # parameters needed: k_bond, r0
    angle_style harmonic # parameters needed: k_theta, theta0
    kspace_style pppm 0.0001 # long-range electrostatics sum method
    pair_modify mix arithmetic # using Lorenz-Berthelot mixing rules
}
} # SPCE
```

Words which are preceded by " $\$$ " or "@" characters are counter variables and will be replaced by integers. (See section 5.2 for details.) Users can include SPCE water in their simulations using commands like these:

```
# -- file "system.lt" --
import "spce_simple.lt"
wat = new SPCE [1000]
```

You can now use "moltemplate.sh" to create simulation input files for LAMMPS

```
moltemplate.sh -pdb coords.pdb -atomstyle "full" system.lt
```

This command will create lammps input files for the molecular system described in "system.lt", using the desired atom style ("full" by default). In this example, moltemplate is relying on an external file ("coords.pdb") to supply the atomic coordinates of the water molecules, as well as the periodic boundary conditions. Coordinates in XYZ format are also supported using "-xyz coords.xyz".

Details

Note that since XYZ files lack boundary information, you must also include a "Boundary" section in your ".lt" file, as demonstrated in section 4.2. In both cases, the order of the atom types in a PDB or XYZ file (after sorting) should match the order they are created by moltemplate (which is determined by the order of the "new" commands in the LT file). Unfortunately this may require careful manual editing of the $P D B$ or $X Y Z$ file.

4.2 Coordinate generation

It is not necessary to provide a separate file with atomic coordinates. It is more common to manually specify the location (and orientation) of the molecules in your system using the ".move()" and ".rot()" commands in the LT file itself (discussed in section 6). For example you can replace the line:

```
wat = new SPCE [1000]
```

from the example above with 1000 lines:

```
wat1 = new SPCE
wat2 = new SPCE.move(3.450, 0.0, 0.0)
wat3 = new SPCE.move(6.900, 0.0, 0.0)
wat4 = new SPCE.move(10.35, 0.0, 0.0)
    : :
wat1000 = new SPCE.move(34.50, 34.50, 34.50)
```

Specifying geometry this way is tedious. Alternatively, moltemplate has simple commands for arranging multiple copies of a molecule in periodic, crystalline, toroidal, and helical 1-D, 2-D, and 3-D lattices. For example, you can generate a simple cubic lattice of $10 \times 10 \times 10$ water molecules (with a 3.45 Angstrom spacing) using a single command (which in this example we split into multiple lines)

```
wat = new SPCE [10].move(0,0,3.45)
    [10].move(0,3.45,0)
    [10].move(3.45,0,0)
```

(See section 6 for more details and examples.) This will create 1000 molecules with names like "wat $[0][0][0]$ ", "wat $[0][0][1]$ ", ..., "wat $[9][9][9]$ ". You can always access individual atomIDs, molIDs, bondIDs, angleIDs, and dihedralIDs (if present), for any molecule elsewhere in your LT files using this notation: "\$atom:wat[2][3][4]/H1", "\$bond:wat[0][5][1]/OH1", "\$angle:wat[2][8][3]/HOH", " $\$$ mol:wat $[0][1][2]$ ". This allows you to define interactions which link different molecules together (see section 6).

A list of available coordinate transformations is provided in section 3.3.

Boundary Conditions:

LAMMPS simulations have finite volume and are usually periodic. We must specify the dimensions of the simulation boundary using the "write_once("Data Boundary")" command.

```
write_once("Data Boundary") {
    0.0 34.5 xlo xhi
    0.0 34.5 ylo yhi
    0.0 34.5 zlo zhi
}
```

This is usually specified in the outermost LT file ("system.lt" in this example). (Note: Boundary conditions do not have to be rectangular or even
periodic. For triclinic cells, additional " $x y "$ ", "xz", and " $y z$ " tilt parameters can be added. For details, lookup the "read_data" and "boundary" commands in the official LAMMPS documentation.)

This system is shown in figure 2 a). After you have specified the geometry, then you can run moltemplate.sh this way:

```
moltemplate.sh -atomstyle "full" system.lt
```


Figure 2: A box of 1000 water molecules (before and after pressure equilibration), generated by moltemplate and visualized by VMD with the topotools plugin. (The VMD console commands used for visualization were: "topo readlammpsdata system.data full", "animate write psf system.psf", "pbc wrap -compound res -all", and "pbc box". See sections 4.3, and C for details.

4.3 Visualization using VMD \& topotools

When you run moltemplate, it generates a LAMMPS data file. This file is usually called "system.data". Geometric information, and bonded topology are stored in this file. After you have run moltemplate, you should look at your system to check it for mistakes. Problems can easily occur with overlapping atoms (missing molecules), periodic boundaries, incorrectly bonded atoms, incorrect rotation and movement. Sometimes many iterations of running moltemplate and visualization are necessary.

Optional: If you have VMD installed, you can automatically visualize the system you have just created automatically by invoking moltemplate with the -vmd command line argument. (In other words invoke moltemplate.sh using moltemplate.sh -vmd instead of moltemplate.sh. VMD must be installed.) If you don't use the -vmd command line argument, you can always view the system in VMD later manually. For instructions how to do that, keep reading...

Some very basic instructions how to use VMD are provided below: (Note: These instructions were written for VMD 1.9 and topotools 1.2)

To view a data file:
a) start VMD
b) from the menu, select Extensions $\rightarrow \mathbf{T k}$ Console
c) enter:

```
topo readlammpsdata system.data full
animate write psf system.psf
```

The first command will display all of the atoms and bonds in your system in VMD's 3-D window. (We use "full" because we are using the "full" atom style in this particular example. If you are using a different atom_style, then change the command above accordingly.)
The second command will create a PSF file ("system.psf") which will be useful later for viewing a trajectory file created during a LAMMPS simulation. (See section 4.5.)
Most likely, atoms and bonds will be represented by ugly dots and lines by default. To change the way molecules are displayed, control their color, display periodic boundaries, and wrap atomic coordinates, read the short VMD tutorial in appendix C.
(Note: As of 2012-12-18, VMD does not have built-in support for exotic atom_styles such as ellipsoids and dipoles, but their are 3rd-party scripts, plugins and settings you can use. Search the VMD and LAMMPS mailing lists for help.)

4.4 Running a LAMMPS simulation (after using moltemplate)

To run a simulation of one or more molecules, LAMMPS requires an input script and a data file. Input scripts typically contain force field styles, parameters and run settings. (They sometimes also contain atom coordinates.) Data files typically contain atom coordinates and bonded topology data. (They sometimes also contain force-field parameters.)

Moltemplate will create the following files: "system.data", "system.in", "system.in.init", "system.in.settings", (and possibly other files including "system.in.coords"). These are LAMMPS input/data files, and they can be run in LAMMPS with minimal modification (see below). The main input script file is named "system.in", and it usually contains just three lines:

```
include "system.in.init"
read_data "system.data"
include "system.in.settings"
```

To run a simulation, you will have to edit this file in order to add a couple of run commands. These commands tell LAMMPS about the simulation conditions you want to use (temperature, pressure), how long to run the simulation, how to integrate the equations of motion, and how to write the results to a file (file format, frequency, etc). Moltemplate.sh can not do this for you. Some simple examples (which you can paste into your input script) are provided in the online examples which can be downloaded from http: //moltemplate.org. (These example input scripts typically have names like "run.in.nvt" and "run.in.npt".)

In addition to the examples, an introduction to LAMMP input scripts is provided at these links: http://lammps.sandia.gov/doc/Section_commands. html\#cmd_1. http://lammps.sandia.gov/doc/Section_howto.html and http://lammps.sandia.gov/doc/Section_howto.html\#howto_15

Here is a list of basic input script commands used in the moltemplate examples (and links to their documentation):
run http://lammps.sandia.gov/doc/run.html
timestep http://lammps.sandia.gov/doc/timestep.html
thermo http://lammps.sandia.gov/doc/thermo.html
dump http://lammps.sandia.gov/doc/dump.html
read_data http://lammps.sandia.gov/doc/read_data.html
restart http://lammps.sandia.gov/doc/restart.html
include http://lammps.sandia.gov/doc/include.html
fix nve http://lammps.sandia.gov/doc/fix_nve.html
fix nvt http://lammps.sandia.gov/doc/fix_nh.html
fix npt http://lammps.sandia.gov/doc/fix_nh.html
fix langevin http://lammps.sandia.gov/doc/fix_langevin.html
fix http://lammps.sandia.gov/doc/fix.html
group http://lammps.sandia.gov/doc/group.html
compute http://lammps.sandia.gov/doc/compute.html
print http://lammps.sandia.gov/doc/print.html
variable http://lammps.sandia.gov/doc/variable.html
rerun http://lammps.sandia.gov/doc/rerun.html
fix shake http://lammps.sandia.gov/doc/fix_shake.html
fix rigid http://lammps.sandia.gov/doc/fix_rigid.html
In addition, all users should be familiar with the following commands: (These appear in the "In Init" section of most LT files.)
atom_style http://lammps.sandia.gov/doc/atom_style.html
pair_style http://lammps.sandia.gov/doc/pair_style.html
bond_style http://lammps.sandia.gov/doc/bond_style.html
angle_style http://lammps.sandia.gov/doc/angle_style.html

4.5 Visualizing Trajectories

After you have run a simulation in LAMMPS, there are several programs which can visualize the system. If you have saved your trajectory in LAMMPS "dump" format, later you can view it in VMD [2]. For the purpose of viewing trajectories in LAMMPS, I recommend using the following style of "dump" commands in the LAMMPS input-script that you use when you run LAMMPS:
dump 1 all custom 1000 DUMP_FILE.lammpstrj id mol type x y z ix iy iz
(The "all" and "1000", refer to the atom selection and save interval, which may differ depending on the kind of simulation you are running. See http: //lammps.sandia.gov/doc/dump.html for details.)

Once you have a dump file, you can view it in VMD using:
a) Start VMD From the menu in the upper-left, select File \rightarrow New Molecule
b) Browse to select the PSF file you created above, and load it. (Don't close the window yet.)
c) Browse to select the trajectory file. If necessary, for "file type" select: "LAMMPS Trajectory". Click on OK.
d) Click on the Load button.

Again, to customize molecule appearance, display periodic boundary conditions and wrap molecule coordinates, see the commands discussed in appendix C.
(Note: VMD may not be able to correctly visualize simulations which do not preserve the number of atoms and bonds over time, such as those run using fix bond/create, fix bond/break, or fix gcmc.)

5 Overview

5.1 Basics: The write() and write_once() commands

Each LT file typically contains one or more "write" or "write_once" commands. These commands have the following syntax

```
write_once(filename) {text_block}
```

This creates a new file with the desired file name and fills it with the text enclosed in curly brackets $\}$. Text blocks usually span multiple lines and contain counter variables (beginning with "@" or "\$"). which are replaced with numbers. However the "write()" command will repeatedly append the same block of text to the file every time the molecule (in which the write command appears) is generated or copied (using the "new" command, after incrementing the appropriate counters, as explained in 5.2.2.

5.2 Basics: counter variables

Words following a "@" or a " $\$$ " character are counter variables. (These are not to be confused with LAMMPS variables http://lamps.sandia.gov/ doc/variable.html). By default, all counter variables are substituted with a numeric counter before they are written to a file. These counters begin at 1 (by default), and are incremented as the system size and complexity grows (see below).

These words typically contain a colon (:) followed by more text. The text preceding this colon is the category name. (For example: "\$atom:", "\$bond:", "\$angle:", "@atom:", "@bond:", "@angle:") Variables belonging to different categories are counted independently.

Users can override these assignment rules and create custom categories. (See appendices D. 1 and D. 2 for details.)
(Unicode is supported.)

5.2.1 Static counters begin with "@"

"@" variables generally correspond to types: such as atom types, bond types, angle types, dihedral types, improper types. These are simple variables and they assigned to unique integers in the order they are read from your LT files. Each uniquely named variable in each category is assigned to a different integer. For example, "@bond:" type variables are numbered from " 1 " to the number of bond types. (Pairs of bonded atoms are assigned a bond type. Later, LAMMPS will use this integer to lookup the bond-length and Hooke's-law elastic constant describing the force between these two atoms.)

5.2.2 Instance counters begin with "\$"

On the other hand, " $\$$ " variables correspond to unique ID numbers: atomIDs, bond-IDs, angle-IDs, dihedral-IDs, improper-IDs, and molecule-IDs. These variables are created whenever a copy of a molecule is created (using the "new" command). If you create 1000 copies of a water molecule using a command like

```
wat = new SPCE[10][10] [10]
```

then moltemplate creates 3000 "\$atom" variables with names like

```
$atom:wat[0] [0] [0]/0
$atom:wat[0][0] [0]/H1
$atom:wat[0][0] [0]/H2
$atom:wat[0][0][1]/0
$atom:wat[0][0][1]/H1
$atom:wat[0][0][1]/H2
$atom:wat [9] [9] [9]/0
$atom:wat [9] [9] [9]/H1
$atom:wat [9] [9] [9]/H2
```


5.2.3 Variable names: short-names vs. full-names

In the example above, the $\$$ variables have full-names like "\$atom:wat[8][3][7]/H1", not "\$atom:H1". However inside the definition of the water molecule, you don't specify the full name. You can refer to this atom as "\$atom:H1". Likewise, the full-name for the @atom variables is actually "@atom:SPCE/H", not "@atom:H". However inside the definition of the water molecule, you typically use the shorthand notation "@atom:H".

5.2.4 Numeric substitution

Before being written to a file, every variable (either \$ or @) with a unique full-name will be assigned to a unique integer, starting at 1 by default.

The various $\$$ atom variables in the water example will be substituted with integers from 1 to 3000 (assuming no other molecules are present). But the "@atom: O" and "@atom: H " variables (which are shorthand for "@atom:SPCE/O" and "@atom:SPCE/H") will be assigned to to " 1 " and " 2 " (again, assuming no other molecule types are present).

So, in summary, @ variables increase with the complexity of your system (IE the number of molecule types or force-field parameters), but $\$$ variables increase with the size of your system.

5.2.5 Variable scope

This effectively means that all variables are specific to local molecules they were defined in. In other words, an atom type named "@atom:H" inside the "SPCE" molecule, will be assigned to a different number than an atom named "@atom:H" in an "Arginine" molecule. This is because the two variables will have different full names ("@atom:SPCE/H", and "@atom:Arginine/H").

Sharing atom types or other variables between molecules

If you want to share atom types between molecules, you can place them outside the current molecule definition. Later you can use file-system-pathlike syntax ("../", or "../../" or "/") to access atoms (or molecules) outside of the current molecule. For example, two different molecule types can share the same type of hydrogen atom by referring to it using this syntax: "@atom:../H". (More complex nested relationships are possible. For example see section 9.6.) (Further details of variable syntax are discussed in appendix G.)

5.3 Troubleshooting using the output_ttree directory

Users can see what numbers were assigned to each variable by inspecting the contents of the "output_ttree" subdirectory created by moltemplate. Unfortunately, it not unusual for LAMMPS to crash the first time you attempt to run it on a DATA file created by moltemplate. This often occurs if you failed to spell atom types and other variables consistently. The LAMMPS error message (located at the end of the "log.lammps" file created by LAMMPS)
will help you determine what type of mistake you made. (For example, what type of variable was misspelled or placed in the wrong place?)

To help you, the "output_ttree" directory contains a file named "ttree_assignments.txt". This is a simple 2 -column text file containing a list of all of the variables you have created in one column, and the numbers they were assigned to in the second column. (There is also a comment on each line beginning with a "\#" character which indicates the file and line number where this variable is first used.)

The "output_ttree" directory also contains all of the files that you created. The versions with a ".template" extension contain text interspersed with full variable names (before numeric substitution). (A spelling mistake, like using "\$atom:H" when you meant to say "\$atom:H1" or "@atom:H" will show up in these files if you inspect them carefully.) This can help you identify where the mistake occurred in your LT files.

Once a molecular system is debugged and working, users can ignore or discard the contents of this directory.

5.4 "Data" and "In"

Again, LAMMPS requires an input script and a data file to run. Moltemplate's job is to generate these files. Input scripts typically contain force-field styles, parameters and run settings Data files typically contain atom coordinates and bonded topology data.

If you are familiar with LAMMPS, you may have noticed the file names above (in the example from section 4.1) sound suspiciously like sections from LAMMPS data files or input scripts, such as "Data Boundary", "Data Atoms", "Data Bonds", "Data Masses", "Data Angles", "Data Dihedrals", "Data Impropers", "In Init", "In Settings"). All files whose names begin with "In " or "Data " are special. For the user's convenience, the moltemplate.sh script copies the contents of these files into the corresponding section ("Atoms", "Bonds", "Angles", etc.) of the DATA file or INPUT scripts generated by moltemplate ("system.data", "system.in.settings", etc). (Then the original files are moved to the "output_ttree/" directory, in an effort to clean things up and hide them from view.) Users can create their own custom sections to a LAMMPS data file. (See section 5.6.

However the "write()" and "write_once()" commands are not only used for generating sections from a DATA file or INPUT scripts. Any file can be created. Files whose names do not begin with "In " or "Data " can have any format (and are not moved or cleaned up). (See section 5.5 for an example.)

5.5 (Advanced) Using moltemplate to generate auxiliary files

The following excerpt from an LT file creates a file named "system.in.sw". (It contains parameters for the "sw" pair style. This exotic many-body pair style requires a large number of parameters, which are read from a separate file.) This "system.in.sw" file file will be read later when you run the simulation. (The pair_coeff command below tells LAMMPS to read that file.)

```
write_once("system.in.sw") {
    mW mW mW 6.189 2.3925 1.8 23.15 1.2 -0.33333 7.04956 0.602224 4 0 0
}
write_once("In Settings") {
    pair_coeff * * sw system.in.sw mW NULL NULL NULL
}
```

As new force-field styles and/or fixes are added to LAMMPS, the files they depend on can be embedded in an LT file in this way.

5.6 (Advanced) Making custom DATA sections

Suppose that in the future, the format of the LAMMPS DATA file changes so that it now becomes necessary to supply a new section named "Foo Fee Fum", for example. You could do that using this command:

```
write_once("Data Foo Fee Fum") {
    File contents goes here. (These files can contain
    atom counters and/or other counter variables).
}
```

This way moltemplate copy this text into the "Foo Fee Fum" section at the end of the DATA file it is constructing. This allows users to adapt to future changes in the LAMMPS data file format.

5.7 Details/Comments

Note that it is okay for static and instance variables to share the same variable names (such as "@atom:O" and "\$atom:O", or "@angle:HOH" and "\$angle:HOH"). These are distinct and are counted separately.

Variable and molecule names can include unicode characters. They can also include some whitespace characters and other special characters by using backslashes and curly-brackets, for example: "@\{atom: CA \}" and "@atom: \CA\". Curly-brackets are useful to clarify when a variable name begins and ends, such as in this example: "@\{atom:C\}*@\{atom:H\}". This prevents the "*" character from being appended to the end of the "C" variable name. (Note that using the "*" character in any of the coeff commands within moltemplate is discouraged. See section 10.)

6 Object composition and coordinate generation

Each time a molecule is created using the "new" command, it can be rotated, moved, and scaled. (Individual atom positions can be customized later using the "write("Data Atoms")" command. Molecules are free to move during the simulation, of course.) The initial atomic coordinates of a large compound object is typically created by moving each individual component.

Figure 3: a)-b) Building a complex system from small pieces: Construction of a polymer (b) out of smaller (2-atom) subunits (a) using composition and rigid-body transformations. Bonds connecting different residues together (blue) must be declared explicitly, but angle and dihedral interactions will be generated automatically. See section 6.1 for details. c) An irregular lattice of short polymers. (See section 7.6.) d) The same system after 100000 time steps using Langevin dynamics. (The VMD console commands used for visualization were: "topo readlammpsdata system.data full", "animate write psf system.psf", "pbc wrap -compound res -all", and "pbc box". See sections 4.3, and Cf for details.

6.1 Building a large molecule from smaller pieces

As an example, we define a small 2 -atom molecule "2bead", construct a short polymer ("peptide") using it as a building block, and then create a lattice of peptides. At each step, we define the relative orientation and position of each unit.

The file below contains the definition of the "2bead" molecule. It contains coordinates of two atoms, and their atomic properties (such as their mass, and Lennard Jones parameters). In addition, it defines a bond be-
tween the atoms, as well as parameters for that type of bond ("@bond:sidechain"). If we were only planning to build a system containing a few isolated "2bead" molecules, then this would be all we need. However, later we intend to connect multiple "2bead" molecules together later to build a polymer (in this example).

Consequently, some new sections have been added to the " 2 bead" molecule which may seem out of place in a simple 2 -atom molecule. This molecule is slightly more complicated because each "2bead" molecule will eventually be used as a building-block for a larger molecule ("Polymer"). Consequently, additional information will be used to define additional 2-body (@bond), 3-body (@angle), and 4-body (@dihedral) interactions between atoms in different monomers in the final polymer. Hopefully the meaning of these interactions will be clear by the context in which they are used. (If not, read section 6.2.)

```
# -- file "2bead.lt" --
2bead {
```

```
write("Data Atoms") {
```

write("Data Atoms") {
\# atomId molId atomType charge x y z
\# atomId molId atomType charge x y z
\$atom:CA \$mol:... @atom:CA 0.0 0.000 1.0000 0.0000000
\$atom:CA \$mol:... @atom:CA 0.0 0.000 1.0000 0.0000000
\$atom:R \$mol:... @atom:R 0.0 0.000 4.4000 0.0000000
\$atom:R \$mol:... @atom:R 0.0 0.000 4.4000 0.0000000
}
}

Note: The "..." in "\$mol:..." tells moltemplate that this molecule

Note: The "..." in "\$mol:..." tells moltemplate that this molecule

may be a part of a larger molecule, and to use the larger

may be a part of a larger molecule, and to use the larger

parent objects molecule id number as its own, if present.

parent objects molecule id number as its own, if present.

write_once("Data Masses") {
write_once("Data Masses") {
\# atomType mass
\# atomType mass
@atom:CA 13.0
@atom:CA 13.0
@atom:R 50.0
@atom:R 50.0
}

```
}
```

\# As usual, force-field parameters ("coeffs") go in the "In Settings" section:
write_once("In Settings") \{
\# Pairwise (non-bonded) interactions:
\# atomType1 atomType2 epsilon sigma
pair_coeff @atom:CA @atom:CA 0.102 .0
pair_coeff @atom:R @atom:R 0.503 .6
\# (Interactions between different atoms are determined by mixing rules.)
\}
write("Data Bonds") \{
\# bond-id bond-type atom-id1 atom-id2
\$bond:CR @bond:sidechain \$atom:CA \$atom:R
\}

```
write_once("In Settings") {
    # bond-type k r0
    bond_coeff @bond:sidechain 30.0 3.4
    bond_coeff @bond:backbone 30.0 3.7
}
# Although there's no need to define angular interactions (because this
# "molecule" only contains two atoms), we define the settings for angles
# or dihedrals which might be present later when we build a polymer.
# Rules for determining 3-body (angle) interactions by atom & bond type:
write_once("Data Angles By Type") {
    # angle-type atomType1 atomType2 atomType3 bondType1 bondType2
    @angle:backbone @atom:CA @atom:CA @atom:CA @bond:* @bond:*
    @angle:sidechain @atom:CA @atom:CA @atom:R @bond:* @bond:*
}
# Force-field parameters for 3-body (angle) interactions:
write_once("In Settings") {
    # angle-type k theta0
    angle_coeff @angle:backbone 30.00 114
    angle_coeff @angle:sidechain 30.00 123
}
# Rules for determining 4-body (dihedral) interactions by atom & bond type:
write_once("Data Dihedrals By Type") {
    # dihedralType atmType1 atmType2 atmType3 atmType4 bndType1 bnd2 bnd3
    @dihedral:back @atom:CA @atom:CA @atom:CA @atom:CA @bond:* @bond:* @bond:*
    @dihedral:side @atom:R @atom:CA @atom:CA @atom:R @bond:* @bond:* @bond:*
}
# Force-field parameters for 4-body (dihedral) interactions:
write_once("In Settings") {
    # dihedral-type K n d w
    dihedral_coeff @dihedral:back -0.5 1 -180 0.0
    dihedral_coeff @dihedral:side -1.5 1 -180 0.0
}
write_once("In Init") {
    # -- Default styles for "2bead" --
    units real
    atom_style full
    bond_style harmonic
    angle_style harmonic
    dihedral_style charmm
    pair_style lj/cut/coul/debye 0.1 11.0
    pair_modify mix arithmetic
```

```
        dielectric 80.0
        special_bonds lj 0.0 0.0 0.0
    }
}
```

Note: The ellipsis notation used here "\$mol:.."". warns moltemplate that the "2bead" molecule may be part of a larger molecule. (This is explained in more detail in section 9.6.2.)

6.1.1 Building a simple polymer

We construct a short polymer by making 7 copies of "2bead", rotating and moving each copy:

```
# -- file "peptide.lt" --
import "2bead.lt"
Peptide {
    create_var {$mol} # optional:force all monomers to share the same molecule-ID
                # (The "Data Atoms" in 2bead must use the "$mol:..." notation.)
    res1 = new 2bead
    res2 = new 2bead.rot(180.0, 1,0,0).move(3.2,0,0)
    res3 = new 2bead.rot(360.0, 1,0,0).move(6.4,0,0)
    res4 = new 2bead.rot(540.0, 1,0,0).move(9.6,0,0)
    res5 = new 2bead.rot(720.0, 1,0,0).move(12.8,0,0)
    res6 = new 2bead.rot(900.0, 1,0,0).move(16.0,0,0)
    res7 = new 2bead.rot(1080.0, 1,0,0).move(19.2,0,0)
    # Now, link the residues together this way:
    write("Data Bonds") {
        $bond:backbone1 @bond:2bead/backbone $atom:res1/CA $atom:res2/CA
        $bond:backbone2 @bond:2bead/backbone $atom:res2/CA $atom:res3/CA
        $bond:backbone3 @bond:2bead/backbone $atom:res3/CA $atom:res4/CA
        $bond:backbone4 @bond:2bead/backbone $atom:res4/CA $atom:res5/CA
        $bond:backbone5 @bond:2bead/backbone $atom:res5/CA $atom:res6/CA
        $bond:backbone6 @bond:2bead/backbone $atom:res6/CA $atom:res7/CA
    }
}
```

The position and orientation of each copy of "2bead" is specified after the "new" statement. Each "new" statement is typically followed by a chain of move/rotate/scale functions separated by dots, evaluated left-to-right (optionally followed by square brackets and then more dots). For example, "res2" is a copy of "2bead" which is first rotated 180 degrees around the X axis (denoted by " $1,0,0$ "), and then moved in the (3.2,0,0) direction.
(The last three arguments to the "rot()" command denote the axis of rotation, which does not have to be normalized.) (A list of available coordinate transformations is provided in section 3.3.)
(Note: Although we did not do this here, it is sometimes convenient to represent polymers as 1-dimensional arrays. See sections 7 and 7.4 for examples.)

To bond atoms in different molecules or molecular subunits together, we used the write("Data Bonds") command to append additional bonds to the system. (Because we are outside the definition of these molecules, we must be careful to refer to the atom-IDs and bond-types by their full-names. Here I'm using the "@bond:backbone" settings which were defined in the "2bead" molecule, so I refer to the bond type as "@bond:2bead/backbone". See section 5.2.3.)

6.1.2 Sharing atom, bond and angle types

Normally you must separately define the parameters for all of the atoms types, and bond types, angle types etc... in every type of molecule. However different kinds of monomers in a heteropolymer typically will share some common backbone atom types and other properties. You must be careful to indicate which atom and bond types are shared between different monomers by referring them using a "../" prefix. (See sections 5.2 .5 , 9.6 , and 9.5 for details and examples.) Note: There is a heteropolymer example in the the "Zbead_heteropolymer/" directory in the online examples. This example demonstrates how to share backbone atoms, bonds, and angles. You can also define specific angle or dihedral interactions which are specific to the atom types in different residues.

6.2 Bonded interactions by type

In this example we did not provide a list of all 3 -body and 4 -body forces between bonded atoms in the polymer. (for example using the "write_once("Data Angles")" command from section 4.1, or the "write_once("Data Dihedrals")", or "write_once("Data Impropers")" commands.) Instead we provided moltemplate.sh with instructions to help it figure out which atoms participate in 3body and 4 -body bonded interactions. Moltemplate can detect consecutively bonded atoms and determine the forces between them based on atom type. (Bond type can also be used as a criteria.) We did this in "2bead.lt" using the "write_once("Angles By Type")" and "write_once("Dihedrals By Type")" commands. You can also generate improper interactions between any 4atoms bonded together in a T-shaped topology using the "write_once("Impropers By Type")" command. See appendix A for more details. (More general interactions are possible. See appendix F.2.)

7 Arrays, slices, and coordinate transformations

Moltemplate supports 1-dimensional, and multi-dimensional arrays. These can be used to create straight (or helical) polymers sheets, tubes, tori. They
are also to fill solid 3 -dimensional volumes with molecules or atoms. (See sections 4.2 and 7.6.)

Here we show an easier way to create the short polymer shown in section 6.1.1. You can make 7 copies of the 2bead molecule this way:

```
res = new 2bead [7]
```

This creates 7 new 2bead molecules (named res[0], res[1], res[2], res[3], ... $\operatorname{res}[6])$. Unfortunately, by default, the coordinates of each molecule are identical. To prevent the atom coordinates from overlapping, you have several choices:

7.1 Transformations following brackets [] in a new statement

After every square-bracket [] in a new command, you can specify a list of transformations to apply. For example, we could have generated atomic coordinates for the the short polymer in section 6.1.1 using this command:

```
res = new 2bead [7].rot(180, 1,0,0).move(3.2,0,0)
```

This will create 7 molecules. The coordinates of the first molecule res[0] are will be unmodified. However each successive molecule will have its coordinates cumulatively modified by the commands "rot ($180,1,0,0$)" followed by "move(3.2,0,0)".

optional: initial customizations (preceding [] brackets)

You can also make adjustments to the initial coordinates of the molecule before it is copied, and before any of the array transformations are applied. For example:

```
res = new 2bead.scale(1.5) [7].rot(180, 1,0,0).move(3.2,0,0)
```

In this example, the "scale(1.5)" transformation is applied once to enlarge every 2bead monomer initially. This will happen before any of the rotation and move commands are applied to build the polymer (so the 3.2 Angstrom spacings between each monomer will not be effected).

7.2 Transformations following instantiation

Alternately you apply transformations to a molecule after they have been created (even if they are part of an array).

```
res = new 2bead [7]
# Again, the first line creates the molecules named
# "res[0]", "res[1]", "res[2]", "res[3]", ... "res[6]".
# The following lines move them into position.
res[1].rot(180.0, 1,0,0).move(3.2,0,0)
res[2].rot(360.0, 1,0,0).move(6.4,0,0)
res[3].rot(540.0, 1,0,0).move(9.6,0,0)
res[4].rot(720.0, 1,0,0).move(12.8,0,0)
res[5].rot(900.0, 1,0,0).move(16.0,0,0)
res[6].rot(1080.0, 1,0,0).move(19.2,0,0)
```


7.3 Transformation order (general case)

A typical array of molecules might be instantiated this way:

```
mols = new Molecule.XFORMS1() [N].XFORMS2()
mols[*].XFORMS3()
```

The list of transformations denoted by "XFORMS1" in this example are applied to the molecule first. Then the transformations in "XFORMS2" are then applied to each copy of the molecule multiple times. (For the molecule with index " i ", named "Molecule $[i]$ ", XFORMS2 will be applied i times.) Finally after all the molecules have been created, the list of transformations in XFORMS3 will be applied. For example, to create a ring of 10 peptides of radius 30.0 , centered at position $(0,25,0)$, use this notation:

```
peptide_ring = new Peptide.move(0,30,0) [10].rot(36,1,0,0)
    # After creating it, we can move the entire ring
    # (These commands are applied last.)
peptide_ring[*].move(0,25,0)
```


7.4 Random arrays

a)

b)

c)

Figure 4: A random heteropolymer (c), composed of of 2bead and 3bead monomers (\mathbf{a} and \mathbf{b}) with (target) probabilities 0.6 and 0.4. (However, due to random fluctuations, the actual ratio in this case was 68% and 32%. To avoid this problem, see section 7.4.1.)

Arrays of random molecules can be generated using the new random() [] syntax. For example, below we define a random polymer composed of 50 $2 b e a d$ and 3bead monomers. (See figure 4.)

```
RandPoly50 {
    # Make a chain of randomly chosen monomers:
    monomers = new random([2bead, 3bead], [0.6, 0.4], 123456)
                        [50].rot (180,1,0,0).move(2.95, 0, 0)
    # Now, link the monomers together this way:
    write("Data Bonds") {
        $bond:bb1 @bond:backbone $atom:monomers[0]/CA $atom:monomers[1]/CA
            $bond:bb2 @bond:backbone $atom:monomers[1]/CA $atom:monomers[2]/CA
            $bond:bb3 @bond:backbone $atom:monomers[2]/CA $atom:monomers[3]/CA
            $bond:bb4 @bond:backbone $atom:monomers[3]/CA $atom:monomers[4]/CA
```

```
        $bond:bb50 @bond:backbone $atom:monomers[48]/CA $atom:monomers[49]/CA
    }
    #(Note: Both the "2bead" and "3bead" molecules contain atoms
    # named "$atom:CA". The atom types are different, however.)
} #RandPoly50
```

It is also possible to fill a 2 or 3-dimensional volume with molecules randomly. This is discussed in section 7.8 .

The new random() function takes 2 or 3 arguments: a list of molecule types (2bead and 3bead in this example), and a list of probabilities (0.6 and 0.4) both enclosed in square-brackets [].

7.4.1 Random arrays with exact molecule type counts

Recall that we requested that 60% of the molecules be of type " 2 bead" and 40% type " 3 bead" (corresponding to 30 and 20 , respectively). However, the resulting polymer (shown in figure 4) contains 34 " 2 bead" and 16 "3bead" monomers (68% and 34%, respectively). This is because each time a monomer is created, a random number is generated to decide which type of monomer will be created. There is no guarantee that the total final fraction of monomers will match the target probabilities exactly (60% and 40%, respectively). To specify the number of molecule types precisely, you can replace the list of probabilities " $[0.6,0.4]$ " with a list of integers " $[30,20]$ ".

```
monomers = new random([2bead, 3bead], [30, 20], 123456)
    [50].rot(180,1,0,0).move(2.95, 0, 0)
```

This will create exactly 30"2bead" and 20 "3bead" monomers. (You can do this with multidimensional arrays as well. See section 7.9.1.)

Details regarding the new random command:

Note: You can tell moltemplate to customize the bond-types and angles, depending on the (types of) monomers are connected by each bond. The "random_heteropolymer" example downloadable at WWW.moltemplate.org demonstrates how to do this.

Note: Although this example, there are only two monomer types ("2bead" and "3bead"), there is no limit to the number of molecule types which appear in these lists (eg "[2bead, 3bead, 4bead],[0.2,0.3,0.2]")

Note: An optional random-seed argument can also be included. (For example the " 123456 " shown above. If you omit this number, then you will get different results each time you run moltemplate.)

Note: These lists can also contain vacancies/blanks. See section 7.9.)
Note: Once a molecule containing random monomers is defined, ("RandPoly50" in this example), each copy of that molecule (created using the new command) is identical.

Optional: Customizing molecule positions in a random() array

You can customize the position of each type of molecule in the array, before the array is constructed. To do this, you can add additional movement commands after each molecule's type name in the list (eg "2bead" and "3bead"):

```
monomers = new random([2bead.move(0,0.01,0),
    3bead.move (0,-0.01,0)],
    [30, 20],
    123456)
    [50].rot(180,1,0,0).move(2.95, 0, 0)
```

The. $\operatorname{move}(0,0.01,0)$ and. $\operatorname{move}(0,-0.01,0)$ suffixes moves these monomers closer or further away from the polymer axis (the x axis in this example). This is not restricted to .move() commands. (You can also use .rot(), and .scale() commands as well.) These moves will be applied (in order from left to right), before any of the .move() and .rot() commands appearing later (following "[50]") are carried out.

$\left.7.5 \quad{ }^{*}\right]$ and $[\mathrm{i}-\mathrm{j}]$ slice notation

You can move the entire array of molecules using " $[$ "]" notation:

```
res[*].move(0,0,40)
```

(Note that "res.move $(0,0,40)$ " does not work. You must include the "[*]".) You can also use range limits to move only some of the residues:

```
res[2-4].move(0, 0, 40)
```

This will move only the third, fourth, and fifth residues. If you are more familiar with python's slice notation, you can accomplish the same thing using:

```
res[2:5].move(0,0,40)
```

(In this case, the second integer (eg " 5 ") is interpreted as a strict upper bound.)
(If these customizations are not enough for your needs, you can also always load atom coordinates from an external PDB or XYZ file. Such files can be generated by PACKMOL, or a variety of advanced graphical molecular modeling programs. For complex systems, this may be the best choice.)

7.5.1 Building arrays one interval at a time (using slice notation)

For a more complicated example, you can build polymers using slice notation. The example below demonstrates how to build a polymer, specifying which part is random, and and which part is not:

```
monomers[0] = new 3bead
monomers[1-48] = new random([2bead, 3bead], [30, 18], 123456)
    [48].rot(180,1,0,0).move(2.95, 0, 0)
monomers[49] = new 3bead
# It's a good idea to move these monomers to keep them from overlapping
monomers[0].rotate(180,1,0,0)
monomers[1-48].move(2.95,0,0)
monomers[49].move(144.55,0,0) #(note: 144.55=49*2.95)
```

In this example, we insure that monomers[0] and monomers[49] are both of type "3bead" (while keeping the total number of "2bead" and "3bead" monomers at 30 and 20, respectively).
(Note: You can replace "monomers[1-48]" with "monomers[1:49]", or "monomers $[1 * 48]$ ", if you prefer that syntax style. You can build multidimensional arrays using slice notation as well, for example "molecules[3][10-19][4-6] = new Molecule[10][3]")

7.6 Multidimensional arrays

The same techniques work with multidimensional arrays. Coordinate transformations can be applied to each layer in a multi-dimensional array. For example, to create a cubic lattice of $3 \times 3 \times 3$ peptides: you would use this syntax:

```
molecules = new Peptide [3].move(30.0, 0, 0)
    [3].move(0, 30.0, 0)
    [3].move(0, 0, 30.0)
```

(Similar commands can be used with rotations to generate objects with cylindrical, helical, conical, or toroidal symmetry.)

7.7 Customizing individual rows, columns, or layers

Similarly, you can customize the position of individual peptides, or layers or columns using the methods above:

```
molecules[1][*][*].move(0,20,0)
molecules[*][1] [*].move(0,0,20)
molecules[*][*][1].move(20,0,0)
```

See figure 3k) (You can also use slice notation, eg "molecules[1][0-2][01].move(20,0,0)")

You can delete part of an array and replace it with something else (eg "Lipid") using slice notation:

```
delete molecules[0-1][1][1-2] # (shorthand for delete molecules[0] [1] [1]
    # delete molecules[0][1][2]
# delete molecules[1][1][1]
# delete molecules[1][1][2])
```

\# Now replace the array elements we deleted:

```
molecules[0-1][1][1-2] = new Lipid [2].move(30, 0.0, 0.0)
    [2].move(0.0, 0.0, 30.0)
```

\# ...and move them back to the location of the vacancies we created
molecules[0-1] [1] [1-2].move(0, 30.0, 30.0)

The word" Lipid" in this example is not important. It is the name of some other molecule type.

7.8 Creating random mixtures using multidimensional arrays

You can use "new random()" to fill space with a random mixture of molecules. The following 2-dimensional example creates a lipid bilayer (shown in figure 5) composed of an equal mixture of DPPC and DLPC lipids. (...Whose definition we omit here. See the online examples for details.)
import "lipids"
import "lipids"
lipids $=$ new random([DPPC,DLPC], [0.5,0.5], 123)
lipids $=$ new random([DPPC,DLPC], [0.5,0.5], 123)
[19].move (7.5, 0, 0)
[19].move (7.5, 0, 0)
[22].move (3.75, 6.49519, 0)
[22].move (3.75, 6.49519, 0)
[2] $\operatorname{rot}(180,1,0,0)$
[2] $\operatorname{rot}(180,1,0,0)$

```
# define DPPC & DLPC
```


define DPPC \& DLPC

"123"=random_seed

"123"=random_seed

lattice spacing 7.5

lattice spacing 7.5

hexagonal lattice

hexagonal lattice

2 monolayers

```
# 2 monolayers
```


Figure 5: A lipid bilayer membrane composed of a random equal mixture of two different lipid types in a 1:1 ratio. (See section 7.8.) In b) one of the molecule types was left blank leaving vacancies behind. (See section 7.9.)

7.9 Inserting random vacancies

The list of molecule types passed to the random() function may contain blanks. In the next example, 30% of the lipids are missing:

```
lipids = new random([DPPC, ,DLPC], [0.35,0.3,0.35], 123) # 2nd element is blank
    [19].move(7.5, 0, 0)
    [22].move(3.75, 6.49519, 0)
    [2].\operatorname{rot}(180, 1, 0, 0)
```

The results are shown in figure 5b). (Note: When this happens, the array will contain missing elements. Any attempt to access the atoms inside these missing molecules will generate an error message, however moving or deleting array entries using [*] or [i-j] notation should be safe.)

7.9.1 Random multidimensional arrays with exact type counts

Due to random fluctuations the number of DPPC and DLPC lipids created may not equal exactly $0.35 \times$ of the number of entries in the array,

Alternately, you can specify the exact number of DPPC and DLPC molecules you desire (as opposed to a list of probabilities). To do this, replace the list of probabilities with integers:

```
lipids = new random([DPPC, ,DLPC], [293,250,293], 123)
    [19].move(7.5, 0, 0)
    [22].move(3.75, 6.49519, 0)
    [2].\operatorname{rot}(180, 1, 0, 0)
```

This will generate exactly 293 DPPC and DLPC molecules (and 250 blank entries, since the second molecule type was unspecified). The sum (ie $293+250+293)$ must equal the number of entries in the array you are creating (ie $19 \times 22 \times 2$).

7.10 Cutting rectangular holes using delete

The delete command can be used to cut large holes in 1, 2 , and 3 -dimensional objects. For example, consider a simple 3 -dimensional $12 \times 12 \times 12$ cube of molecules. (For simplicity, each "molecule" in this example contains only one atom. These atoms appear as blue spheres in figure 6.)

```
molecules = new OneAtomMolecule [12].move(3.0,0,0)
    [12].move(0,3.0,0)
    [12].move(0,0,3.0)
```

Then, we cut out some rectangular vacancies:

```
delete molecules[*] [*] [2]
delete molecules[*] [*] [8]
delete molecules [6-7] [0-8] [5-6]
```

The result of these operations is shown in figure 6. (Note: You may move or delete previously deleted array elements more than once, and/or deleting overlapping rectangular regions without error.)

8 Customizing molecule position and topology

By default, each copy of a molecule created using the new command is identical. This need not be the case.

As discussed in section 7.2, individual molecules which were recently created can be moved, rotated, and scaled. You can also overwrite or delete individual atoms, bonds, and other interactions within a molecule, or their subunits. (See sections 8.3.2, 8.1, and 8.2.) You make any of these modifications to some copies of the molecule without effecting other copies. Furthermore, if those molecules are compound objects (if they contain individual molecular subunits within them), then you can rearrange the positions of

Figure 6: Rectangular holes can be carved out of an array of molecules (represented here by blue spheres) using the "delete" command. Three delete commands were used to remove the two planar regions and the rectangular hole in the center.
their subunits as well. And all of this can be done from anywhere else in the LT file.

For example, suppose we used the "Peptide" molecule we defined above to create a larger, more complex "Dimer" molecule.

```
Dimer {
    peptides[0] = new Peptide
    peptides[1] = new Peptide.rot(180,1,0,0).move(0, 12.4, 0)
}
dimer = new Dimer
```

The Dimer molecule is shown in figure 7 a). Optional: If you want all the atoms in a "Dimer" to share the same molecule-ID, then define "Dimer" this way:

Dimer \{
create_var \{ \$mol \}
peptides[0] = new Peptide
peptides[1] = new Peptide.rot $(180,1,0,0) . \operatorname{move}(0,12.4,0)$
\}
For this to work, you must also delete the "create_var $\{\$ m o l:$.$\} " line from$ the definition of the Peptide molecule. See section 6.1.

We can subsquently customize the position of the 3rd residue of the second peptide this way:
dimer/peptides[1]/res[2].move ($0,0.2,0.6$)
This does not effect the position of res[2] in peptides[0]. (or in any other "Peptide" or "Dimer" molecule.) If you want to move both residues, you could use a wildcard character "*"
dimer/peptides[*]/res[2].move ($0,0.2,0.6$)
(You can also use ranged (slice) notation, such as "peptides[0-1]", as an alternative to "peptides $[*]$ ". See section 7.5 .

To make changes that apply to every subsequently created "Peptide" or "Dimer" molecule, see section 8.4.)

8.1 Customizing individual atom locations

The "move" or "rot" commands can not be used to control the positions of individual atoms. Instead simply overwrite their coordinates this way:

```
write("Data Atoms") {
    $atom:dimer/peptides[0]/res[2]/CA $mol:dimer/peptides[1] @atom:2bead/R 0 6.4 8.2 0.
}
```

Note that because you are outside the definition of the 2bead molecule, you must be careful to refer to the atom-ID, molecule-ID, and atom-Type variables using their full names, as shown above. (Don't use the abbreviated names you normally use. See section 5.2.3.)

8.2 Adding bonds and angles to individual molecules

Adding additional bonds within a molecule can be accomplished by writing additional lines of text to the "Data Bonds" section. (This is what we did when we added bonds between residues to create a polymer in section 6.1.1.) Again, bonds and atom names must be referred to by their full names. Bonds and bonded interactions can be deleted using the "delete" command. (See section 8.3.)

8.3 The delete command

8.3.1 Deleting molecules or molecular subunits

Molecules can be further customized by deleting individual atoms, bonds, bonded-interactions, and entire subunits. We can delete the 3rd residue of the second peptide, use the "delete" command:

```
delete dimer/peptides[1]/res[2]
```


8.3.2 Deleting atoms, bonds, angles, dihedrals, and impropers

Individual atoms or bonds can be deleted in a similar way:

```
delete dimer/peptides[1]/res[3]/CA #<-- deletes the "CA" atom
delete dimer/peptides[1]/res[4]/sidechain #<-- deletes the "sidechain" bond
```

Whenever an atom or a molecule is deleted, the bonds, angles, dihedrals, and improper interactions involving those atoms are deleted as well. Note: You must omit the "\$" character when deleting atoms, bonds, or angles, as we did in the two lines above).

When a bond is deleted, any angular, dihedral, or improper interactions which were automatically generated by moltemplate are removed as well. (However other bonded interactions explicitly listed by the user in their "Data Angles", "Data Dihedrals", or "Data Impropers" sections are not removed. These need to be deleted manually.)

Multiple molecules can moved or deleted in a single command. For example, the following command deletes the third, fourth, and fifth residues from both peptides[0] and peptides[1]:

```
delete dimer/peptides[*]/res[2-4]
```

See section 7.5 for an explanation of ranged ("[2-4]") array notation, and wildcard characters ("*").

Minor bug notice: Deleting atoms or molecules may cause inaccuracies in the \$atoms, \$bonds, \$angles, \$dihedrals, and \$impropers sections of the "ttree_assignments.txt" file. (If this is a problem, please email me. -Andrew 2014-12-09.) Fortunately, this should not harm the resulting LAMMPS data files or input scripts generated by moltemplate. They should still work with LAMMPS.

WARNING: The delete feature is experimental. There have been a few bugs in the delete command, but by 2014-12-09 these should be fixed. Please report any problems you find. As always, be sure to visualize your structures to make sure they look reasonable. (...by running moltemplate.sh using the "-vmd" command line option, for example. See sections 4.3. (for details.)

8.4 Customizing molecule types

You can create modified versions of existing molecule types, without having to redefine the entire molecule. For example:

```
Dimer0 = Dimer.move(-9.6,-6.2, 0).scale(0.3125)
```

or equivalently:

```
Dimer0 = Dimer
Dimer0.move(-9.6,-6.2, 0).scale(0.3125)
```

This creates a new type of molecule named "Dimer0" whose coordinates have been centered and rescaled. (Note that the "scale()" command only effects the atomic coordinates. (You will have to override earlier force field settings, such as atomic radii and bond-lengths in order for this to work properly.) If we want to make additional customizations (such as adding atoms, bonds, or molecular subunits), we could use this syntax:

```
Dimer0 = Dimer
# Add some new atoms connecting the two peptides in the dimer
Dimer0 {
    write("Data Atoms") {
        $atom:t1 $mol:. Qatom:2bead/CA 0.0 23.0
        $atom:t2 $mol:. @atom:2bead/CA 0.0 24.7 4.0 0.0
        $atom:t3 $mol:. Qatom:2bead/CA 0.0 24.7 8.4 0.0
        $atom:t4 $mol:. Qatom:2bead/CA 0.0 23.0
    }
    write("Data Bonds") {
        $bond:b1 @bond:2bead/backbone $atom:peptides[0]/res7/CA $atom:t1
        $bond:b2 @bond:2bead/backbone $atom:t1 $atom:t2
        $bond:b3 @bond:2bead/backbone $atom:t2 $atom:t3
        $bond:b4 @bond:2bead/backbone $atom:t3 $atom:t4
```

```
        $bond:b5 @bond:2bead/backbone $atom:t4 $atom:peptides[1]/res7/CA
    }
}
# Center and rescale the atoms in all "Dimer0"
Dimer0.move(-9.6,-6.2, 0).scale(0.3125)
```

The result of these modifications is shown in figure 7 p).

Figure 7: a) The "Dimer" molecule. This is a contrived example consisting of two "Peptides". See section 6.1.1 b) A customized version of the "Dimer" molecule. (The original "Dimer" is shown faded in the background for comparison.)

Note: These coordinate transformations will be applied after the molecule is constructed. (If you add atoms to the molecule, these will be added before the coordinate transformations are applied, even if you issue the command later.) Consequently, to make things clear, I recommend placing the coordinate transforms applied to an entire molecule type after all of its internal details (bonds, atoms, subunits) have been declared, as we did here.

(Advanced) Inheritance

The Dimer0 molecule is a type of Dimer molecule. For those who are familiar with programming, relationships like this are analogous to the relationship between parent and child objects in an object-oriented programming language. More general kinds of inheritance are supported by moltemplate and are discussed in section 9.8 .

(Advanced) Multiple Inheritance

If we wanted, we could have created a new molecule type (like "Dimer0") which includes atom types and features from multiple different types of molecules. Section 9.8 mentions one way to do this and section 9.8 .3 discusses alternate approaches.

Advanced moltemplate usage

9 Portability: Using LT files for force-field storage

The ".LT" format is a flexible file format for storing force field parameters in LAMMPS. If you want to share your ".LT" file with others, it's not safe to assume that all interactions use the same standard formula.

9.1 Mixing molecule types

LAMMPS has the ability to combine molecules using multiple different force-field styles together using. In section 4.1, we provided an example of an SPCE water molecule model. This example was simple to understand. However, as written, it would be impossible to combine this definition of water with other molecules which don't share the same simple bond or angle styles. For example, we used harmonic restoring forces to preserve the water angle at 109.47°, but other users may want to mix this SPCE water with a small number of molecules which use a more complicated angular potential formula, or tabular angle potentials. Using the "hybrid" keyword, you can avoid this limitation. A more robust example is included below.

```
# file "spce.lt"
#
# H1 H2
#
# 0
SPCE {
    write_once("In Init") {
    # -- Default styles (for solo "SPCE" water) --
    units real
    atom_style full
    pair_style hybrid lj/charmm/coul/long 9.0 10.0 10.0
    bond_style hybrid harmonic
    angle_style hybrid harmonic
    kspace_style pppm 0.0001
    pair_modify mix arithmetic
    }
    # AtomID MolID("."=this) AtomType charge coordX coordY coordZ
    write("Data Atoms") {
    $atom:0 $mol:. @atom:0 -0.8476 0.0000000 0.00000 0.000000
    $atom:H1 $mol:. @atom:H 0.4238 0.8164904 0.00000 0.5773590
    $atom:H2 $mol:. Qatom:H 0.4238 -0.8164904 0.00000 0.5773590
}
```

```
# atom-type Mass
write_once("Data Masses") {
    @atom:0 15.9994
    @atom:H 1.008
}
    # -- Forces between atoms (non-bonded) --
    # atomTypeI atomTypeJ pair-style-name parameter-list
    write("In Settings") {
    pair_coeff @atom:0 @atom:0 lj/charmm/coul/long 0.1553 3.166
    pair_coeff @atom:H @atom:H lj/charmm/coul/long 0.0 2.058
    }
    # -- Forces between atoms (bonded) --
    # bond-id bond-type atom-id1 atom-id2
    write("Data Bonds") {
    $bond:OH1 @bond:OH $atom:O $atom:H1
    $bond:OH2 @bond:OH $atom:O $atom:H2
    }
    # bond-type bond-style-name parameter-list
    write("In Settings") {
    bond_coeff @bond:OH harmonic 200.0 1.0
    }
    # angle-id angle-type atom-id1 atom-id2 atom-id3
    write("Data Angles") {
    $angle:HOH @angle:HOH $atom:H1 $atom:O $atom:H2
}
# angle-type angle-style-name parameter-list
write("In Settings) {
    angle_coeff @angle:HOH harmonic 200.0 109.47
}
# miscellaneous
write_once("In Settings") {
    group spce type @atom:O @atom:H
    fix fSHAKE spce shake 0.0001 10 100 b @bond:OH a @angle:HOH
    # (Remember to "unfix" fSHAKE during minimization.)
}
} # SPCE
```

There are two differences between this molecule definition and the "spce_simple.lt" example from section 4.1.

Hybrid force field styles

To experienced LAMMPS users, it may seem strange that in this example that we have chosen "hybrid" styles followed by only one force-field style ("harmonic"). However this will make your molecule easier to share with others. When other people use your LT file, they can override these styles as explained in section 9.2 .

9.2 Combining molecules with different force field styles

Later on, if a user wants to combine the SPCE water molecule with another molecule which uses a tabular pair_style (for example), they would have to specify the complete hybrid pair_style in the "Init" section of their LT file. For example:

```
import "spce.lt"
import "other_molecule.lt"
write_once("In Init") {
    pair_style hybrid lj/charmm/coul/long 9 10 10 table spline 1000
}
```

Note: By placing the "write_once("In Init") \{ \}" statement after "import "spce.lt"", this insures that the pair_style commands issued here will override the pair_style commands issued earlier "spce.lt". This allows moltemplate users users to combine their molecules "spce.lt" file shown here with other template files without modification (assuming the atom styles match).

9.3 Nesting

Molecule names such as "Solvent" (or even "Water") are short and easy to type, but are vague and are not portable. If you use common, generic molecule names, you will not be able to combine your molecule templates with templates written by others (without carefully checking for naming conflicts). LT files were meant to be used for storing and exchanging libraries of different molecule types.

Suppose, for example, that you want to run a simulation consisting of different molecule types, each of which belong to different LT files. Suppose two of the LT files both happen to contain definitions for "Water". Moltemplate does not detect these name clashes automatically and instead attempts to merge the two versions of "Water" together, (most likely creating a molecule with 6 atoms instead of 3). This is presumably not what you want.

As the number of molecule types grows, the possibility of naming clashes increases. As the behavior of the same molecule can be approximated using many different force fields, one has to be careful to avoid clashing molecule names.

To alleviate the problem, you can "nest" your molecules inside the definition of other molecules or namespace objects. This reduces the scope in which your molecule is defined. See section 9.5 for an example.

9.4 A simple force-field example

Force-field parameters can be shared by groups of related molecules. In the example below, we create an object named "TraPPE". Later we use it to define a new molecule named "Cyclopentane".

The following example defines a coarse-grained (united-atom) version of a "cyclopentane" molecule. (Hydrogen atoms have been omitted.) In this example, only the atom types (and positions) and the bonds connecting them need to be specified. The interactions between them are determined automatically by the settings in the force-field file "trappe1998.lt".

```
import "trappe1998.lt"
cyclopentane {
    # AtomID MolID('.'=this) AtomType charge coordX coordY coordZ
    write("Data Atoms") {
        $atom:C1 $mol:. @atom:TraPPE/CH2 0.0 0.0000 0.000000000 1.0000000
        $atom:C2 $mol:. @atom:TraPPE/CH2 0.0 0.0000 0.951056516 0.3090170
        $atom:C3 $mol:. @atom:TraPPE/CH2 0.0 0.0000 0.587785252 -0.809017
        $atom:C4 $mol:. Qatom:TraPPE/CH2 0.0 0.0000 -0.587785252 -0.809017
        $atom:C5 $mol:. @atom:TraPPE/CH2 0.0 0.0000 -0.951056516 0.3090170
    }
```

 write("Data Bonds") \{
 \$bond:bond1 @bond:TraPPE/CC \$atom:C1 \$atom:C2
 \$bond:bond2 @bond:TraPPE/CC \$atom:C2 \$atom:C3
 \$bond:bond3 @bond:TraPPE/CC \$atom:C3 \$atom:C4
 \$bond:bond4 Qbond:TraPPE/CC \$atom:C4 \$atom:C5
 \$bond:bond5 @bond:TraPPE/CC \$atom:C5 \$atom:C1
 \}
 \}
(The "TraPPE/" is explained below.) We can create copies of this molecule in the same way we did with SPCE:

```
# A cubic lattice of 125 cyclopentane molecules (12-angstrom spacing)
mols = new Cyclopentane [5].move(0,0,12) [5].move(0,12,0) [5].move(12,0,0)
```

Unlike the SPCE example, we don't have to specify all of the interactions between these atoms because the atom and bond types (CH2, CC). match the type-names defined in the "trappe1998.lt" file. This file contains a collection of atom types and force-field parameters for coarse-grained hydrocarbon chains. (See [5] for details.) This way, the "CH2" atoms in cyclopentane will interact with, and behave identically to any " CH 2 " atom from any other molecule which uses the TraPPE force field. (The same is true for other atom types, and interaction-types which are specific to "TraPPE", such as "@atom:TraPPE/CH3", "@bond:TraPPE/CC", etc... Another molecule which uses the TraPPE force field is discussed later in section 9.5.) The important parts of the "trappe1998.lt" file are shown below:

9.4.1 Namespace example

```
# -- file "trappe1998.lt" --
TraPPE {
    write_once("Data Masses") {
        @atom:CH2 14.1707
        @atom:CH3 15.2507
    }
    write_once("In Settings") {
        bond_coeff @bond:CC harmonic 120.0 1.54
        angle_coeff @angle:CCC harmonic 62.0022 114
        dihedral_coeff @dihedral:CCCC opls 1.411036 -0.271016 3.145034 0.0
        pair_coeff @atom:CH2 @atom:CH2 lj/charmm/coul/charmm 0.091411522 3.95
        pair_coeff @atom:CH3 @atom:CH3 lj/charmm/coul/charmm 0.194746286 3.75
        # (Interactions between different atom types use mixing rules.)
        # (Hybrid styles were used for portability.)
    }
    write_once("Data Angles By Type") {
        @angle:CCC @atom:C* @atom:C* @atom:C* @bond:CC @bond:CC
    }
    write_once("Data Dihedrals By Type") {
        @dihedral:CCCC @atom:C* @atom:C* @atom:C* @atom:C* @bond:CC @bond:CC @bond:CC
    }
}
```

In addition to the atom-type names and masses, this file stores the force-field parameters (coeffs) for the interactions between them.

Bonded interactions by type

Again, the "Angles By Type" and "Dihedrals By Type" sections tell moltemplate.sh that bonded 3 -body and 4 -body interactions exist between any 3 or 4 consecutively bonded carbon atoms (of type CH2, CH3, or CH4) assuming they are bonded using "CC" (saturated) bonds. The "*" character is a wild-card. "C*" matches "CH2", "CH3", and "CH4". (Bond-types can be omitted or replaced with wild-cards "@bond:*".)

Namespaces and nesting:

Names like "CH2" and "CC" are extremely common. To avoid confusing them with similarly named atoms and bonds in other molecules, we enclose them ("nest" them) within a namespace ("TraPPE", in this example). Unlike "SPCE" and "Cyclopentane", "TraPPE" is not a molecule. It is just a container of atom types, bond-types and force-field parameters shared by other molecules. We do this to distinguish them from other atoms and bonds which have the same name, but mean something else. Elsewhere we can refer to these atom/bond types as "@atom:TraPPE/CH2" and "@bond:TraPPE/CC". (You can also avoid repeating the cumbersome
"TraPPE/" prefix for molecules defined within the TraPPE namespace. For example, see section 9.5.)

9.5 Nested molecules

Earlier in section 9.4.1, we created an object named "TraPPE" and used it to create a molecule named "Cyclopentane". Here we use it to demonstrate nesting. Suppose we define a new molecule "Butane" consisting of 4 coarsegrained (united-atom) carbon-like beads, whose types are named "CH2" and "CH3".

```
# -- file "trappe_butane.lt" --
import "trappe1998.lt"
Butane {
    write("Data Atoms"){
        $atom:C1 $mol:. @atom:TraPPE/CH3 0.0 0.419372 0.000 -1.937329
        $atom:C2 $mol:. @atom:TraPPE/CH2 0.0 -0.419372 0.000 -0.645776
        $atom:C3 $mol:. @atom:TraPPE/CH2 0.0 0.419372 0.000 0.645776
        $atom:C4 $mol:. @atom:TraPPE/CH3 0.0 -0.419372 0.0000 1.937329
    }
    write("Data Bonds"){
        $bond:b1 @bond:TraPPE/CC $atom:C1 $atom:C2
        $bond:b2 @bond:TraPPE/CC $atom:C2 $atom:C3
        $bond:b3 @bond:TraPPE/CC $atom:C3 $atom:C4
    }
}
```

Alternately, as mentioned above, it may be simpler to nest our "Butane" within "TraPPE", so that so that it does not get confused with other (perhaps all-atom) representations of butane. In that case, we would use:

```
# -- file "trappe_butane.lt" --
import "trappe1998.lt"
TraPPE {
    Butane {
        write("Data Atoms"){
            $atom:C1 $mol:. @atom:../CH3 0.0 0.419372 0.000 -1.937329
            $atom:C2 $mol:. @atom:../CH2 0.0 -0.419372 0.000 -0.645776
            $atom:C3 $mol:. @atom:../CH2 0.0 0.419372 0.000 0.645776
            $atom:C4 $mol:. @atom:../CH3 0.0 -0.419372 0.0000 1.937329
        }
        write("Data Bonds"){
            $bond:b1 @bond:../CC $atom:C1 $atom:C2
            $bond:b2 @bond:../CC $atom:C2 $atom:C3
            $bond:b3 @bond:../CC $atom:C3 $atom:C4
        }
```

```
    }
}
```

Note: Wrapping Butane within "TraPPE\{ \}" clause merely appends additional content to be added to the "TraPPE" object defined in the "trappe1998.lt" file (which was included earlier). It does not overwrite it. Again "../" tells moltemplate use the "CH2" atom defined in the context of the TraPPE environment (IE. one level up). This insures that moltemplate does not create a new "CH2" atom type which is local to the Butane molecule. (Again, by default all atom types and other variables are local. See section 5.2.5.)

To use this butane molecule in a simulation, you would import the file containing the butane definition, and use a "new" command to create one or more butane molecules.

```
import "trappe_butane.lt"
new butane = TraPPE/Butane
```

(You don't need to import "trappe1998.lt" in this example because it was imported within "trappe_butane.lt".) The "TraPPE/" prefix before "Butane" lets moltemplate/ttree know that butane was defined locally within TraPPE.

Note: An alternative procedure using inheritance exists which may be a cleaner way to handle these kinds of relationships. See sections 9.8 and 9.8.1.

9.6 Path syntax: "../", ".../", and "\$mol:."

Generally, multiple slashes ("/") as well as ("../") can be used build a path that indicates the (relative) location of any other molecule in the object hierarchy. (The ".", "/" and ".." symbols are used here in the same way they are used to specify a path in a unix-like file-system. For example, the "." in "\$mol:." refers to the current molecule (instance), in the same way that "./" refers to the current directory. (Note: "\$mol" is shorthand for "\$mol:.")

A slash by itself,"/", refers to the global environment. This is the outermost environment in which all molecules are defined/created.

9.6.1 (Advanced) Ellipsis notation ".../"

If you are using multiple levels of nesting, and if you don't know (or if you don't want to specify) where a particular molecule type or atom type (such as "CH2") was defined, you can refer to it using ".../CH2" instead of "../CH2". The "..." ellipsis syntax searches up the tree of nested molecules to find the target (the text following the "/" slash).

9.6.2 (Advanced) \$mol:... notation

Recall that LAMMPS allows users the option to assign molecule-IDs to each atom. (In the water example (section 4.1), atoms in each water molecule is
assigned to a molecule-ID, denoted "\$mol..". In that example, the "." was the name of that molecule's ID.)

If you want to build large molecules using smaller pieces as buildingblocks moltemplate has a way to allow all the the atoms to share the same molecule-ID. To refer to the ID of the molecule to which you belong, use "\$mol:...". (If none of the molecule-objects which instantiate the current molecule-object define a variable in the $\$$ mol category, then a new local $\$$ mol variable will be created automatically.) This means that the second column of each line of the "Data Atoms" section should contain " $\$ \mathrm{~mol}: . .$. " (assuming "atom_style full" or "molecular" is used).

The "..." syntax is explained more formally in appendix G.)

9.7 using namespace syntax

Because the Butane molecule was defined within the TraPPE environment, you normally have to indicate this when you refer to it later. For example, to create a copy of a Butane molecule, you would normally use:

```
import "trappe_butane.lt"
butane = new TraPPE/Butane
```

However for convenience, you can use the "using namespace" declaration so that, in the future, you can quickly refer to any of the molecule types defined within TraPPE directly, without having to specify their path.

```
import "trappe_butane.lt"
using namespace TraPPE
butane = new Butane
```


This only works for molecule types, not atom types

Unfortunately, you still must always refer to atom types, bond types, and any other primitive types explicitly (by their full path). For example, the second line in the "Data Atoms" in the example below does not refer to the CH2 atom type defined in TraPPE. (Instead it creates a new atom type, which is probably not what you want.)

```
import "trappe_butane.lt"
using namespace TraPPE
butane = new Butane
write("Data Atoms") {
    $atom:C1 $mol @atom:TraPPE/CH2 0.0 0.41937 0.00 1.9373 # <-- yes
    $atom:C2 $mol @atom:CH2 0.0 -0.41937 0.00 -0.6457 # new atom type?
}
```

If, for example, you want to leave out the "TraPPE/" prefix when accessing the atom, bond, and angle types defined in TraPPE, then instead you can define a new molecule which inherits from TraPPE. (See section 9.8.)

9.8 Inheritance

We could have defined Butane this way:

```
import "trappe1998.lt"
Butane inherits TraPPE {
    write("Data Atoms"){
        $atom:C1 $mol:. @atom:CH3 0.0 0.419372 0.000 -1.937329
        $atom:C2 $mol:. @atom:CH2 0.0 -0.419372 0.000 -0.645776
        $atom:C3 $mol:. @atom:CH2 0.0 0.419372 0.000 0.645776
        $atom:C4 $mol:. @atom:CH3 0.0 -0.419372 0.0000 1.937329
    }
    write("Data Bonds"){
        $bond:b1 @bond:CC $atom:C1 $atom:C2
        $bond:b2 @bond:CC $atom:C2 $atom:C3
        $bond:b3 @bond:CC $atom:C3 $atom:C4
    }
}
```

A molecule which inherits from another molecule (or namespace) is a particular type of that molecule (or namespace). Defining Butane this way allows it to access all of molecule types, atom types, and bond types, etc... defined within TraPPE as if they were defined locally. (I did not have to refer to the CH3 atom types as "@atom:TraPPE/CH3", for example.)

9.8.1 Multiple inheritance:

A molecule can inherit from multiple parents. This is one way you can allow the Butane molecule to borrow atom, bond, angle, dihedral, and improper types from multiple different force-field parents:

```
import "trappe1998.lt"
import "dreiding1990.lt"
Butane inherits TraPPE Dreiding {
...
}
```

Details:Moltemplate attempts to resolve duplicate atom types or molecule types if they are found in both parents, giving priority to the first parent in the list of parents following the "inherits" keyword. ("TraPPE" in this example.)

9.8.2 Inheritance vs. Nesting

If two molecules are related to each other this way: " A is a particular type of B ", then consider using inheritance instead of nesting (or object composition). In this example (with Butane and TraPPE) either nesting or inheritance would work.

Again, one very minor advantage to nesting Butane inside TraPPE, is that it prevents the name Butane from being confused with or conflicting with any other versions of the Butane molecule defined elsewhere. (Usually this is not a consideration.)

9.8.3 Inheritance vs. Object Composition

On the other hand, if two molecules are related to each other this way: " A is comprised of B and C ", then you might consider using object composition instead of inheritance. For example:

```
import "B.lt" # <-- defines the molecule type "B"
import "C.lt" # <-- defines the molecule type "C"
A {
    b = new B
    c = new C
}
```


9.9 Warning: Use "pair_coeffs" not "Pair Coeffs"

LAMMPS allows users to store force-field parameters ("Coeffs") in two places: a DATA file, or an INPUT script. Similarly, moltemplate technicaly allows you to store these parameters in in the "Data" sections of your .LT file:

```
write_once("Data Pair Coeffs")
write_once("Data Bond Coeffs")
write_once("Data Angle Coeffs")
write_once("Data Dihedral Coeffs")
write_once("Data Improper Coeffs")
```

However, for portability reasons, this is discouraged. Instead, declare your force field parameters as we do in this manual, using the corresponding input script commands. (For example, using "pair_coeff", "bond_coeff", "angle_coeff", "dihedral_coeff", and "improper_coeff" commands. For examples see:

> | http://lammps.sandia.gov/doc/pair_coeff.html |
| :--- |
| http://lammps.sandia.gov/doc/bond_coeff.html |
| http://lammps.sandia.gov/doc/angle_coeff.html |
| http://lammps.sandia.gov/doc/dihedral_coeff.html |
| http://lammps.sandia.gov/doc/improper_coeff.html |

As in the examples, all of these commands belong in the "write_once("In Settings")" sections of your .LT files.)

10 Known bugs and limitations

Please report any bugs you find by email to jewett.aij@gmail.com, or to the lammps-users mailing list.

1) LAMMPS-style molecule-templates are not supported. The DATA files created by moltemplate are not in the correct format to be read by the LAMMPS molecule command. (This is because this command was added after moltemplate was written.) However the formats are similar, and the relevant information can be extracted using a text-editor and converted to the other format. (Using a text-editor and awk, or a spreadsheet program. For more information on these file formats, http://lammps.sandia.gov/doc/ read_data.html|http://lammps.sandia.gov/doc/molecule.html.) Again, feel free to contact jewett.aij@gmail.com to request support for LAMMPS-style molecule templates.
2) Moltemplate consumes a large amount of memory (RAM)

Memory use grows proportional to system size. As of 2014-12-09, setting up a system of 1000000 atoms using moltemplate currently requires between 2.7 and 12 GB of available memory. (Systems with many bonds and angles consume more memory, as well as systems with a high molecule count.) Unfortunately this code was not carefully written to minimize memory usage. (In addition, python programs can require more than 10 times as much memory as similar programs written in $\mathrm{C} / \mathrm{C}++$.)

This problem might be alleviated by using other python interpreters with a lower memory footprint. Alternately, it may be necessary to split a large system into pieces, run moltemplate on each piece, and combine the resulting data files into one large data file later.

Also, computers with a moderate amount of RAM can be rented very cheaply. (For example, see https://cloud.google.com/compute/.)

When setting up large simulations with moltemplate, consider using the "ulimit" command to prevent system crashes. (If you are on a shared computer, ask an administrator to do this.) If these options are not available, you can always run a resource monitor (like "top") before starting moltemplate and kill the process if it's memory usage exceeds 80%.
3) Limited support for non-point-like atoms:

As of 2014-12-09, only the "full", "angle", "atomic", "charge", and "molecular" styles have been tested. The "dipole" atom style is fully supported but it has not been tested. Non-point-like atoms like "ellipsoid", "tri", "line" should also work with moltemplate. However these objects are not rotated correctly by the ".rot()" command (or scaled correctly by the ".scale()" command). More exotic exotic atom styles, such as "wavepacket", "electron", "sphere" and "peri" have not been tested. In addition, atom_style body and atom_style template are not supported. Feel free to contact jewett.aij@gmail.com to request support for exotic atom styles.
4) When placed at the end of a line, LAMMPS interprets the "\&" character as a request to merge two lines together. It is usually safe to use this character inside moltemplate write() or write_once() commands. However in some rare cases, joining two lines together using the "\&" character can confuse moltemplate. For example, in a lammps input script command, (like
"pair_coeff" or "dihedral_coeff"), the "\&" character should not appear before the last "@" or "\$" variable is referenced. Also avoid using the "\&" character anywhere in the "Data Atoms", "Data Bonds", "Data Angles", "Data Dihedrals", "Data Impropers", "Data Angles By Type", "Data Dihedrals By Type", and "Data Impropers By Type" sections.
5) Triclinic boundary conditions have not been tested:

As of 2014-12-09, support for PDB files with triclinic cells is experimental. Please let me know if it is not working.
6) Inconsistent support for wildcard characters ("*" and "?") As of 2014-1-28, the wildcard character "*" is interpreted differently in different parts of an LT file. Wildcard characters work reliably and are used for string pattern matching when inside any of the "By Type" sections in an LT file (such as "Angles By Type", "Dihedrals By Type", and "Impropers By Type"). However these characters are interpreted differently when they appear in pair_coeff, bond_coeff, angle_coeff dihedral_coeff, and improper_coeff commands (and their corresponding "Coeff" sections of a data file). LAMMPS interprets "*" characters appearing in any of the coeff commands as numeric wildcard characters. This can lead to unintended side-effects and is discouraged. So please avoid "*" characters in any of the "coeff" commands (eg pair_coeff, bond_coeff, angle_coeff, dihedral_coeff, improper_coeff). The "*" character can be safely used in array brackets, [*], or in the "By Type" sections. (See section 7.5 and appendix A.)

Appendices

A Bonded interactions "By Type"

Interactions between atoms in LAMMPS which are not bonded together (ie "non-bonded" or "pair" interactions) are specified by atom type. Bonded interactions in LAMMPS, (including 3-body angle, and 4-body dihedral and improper interactions), are specified by unique atom ID number. (There are typically a large number of angles and bonds in a typical molecule, and this information occupies the majority of in a typical LAMMPS data file.)

This has changed in moltemplate.sh. moltemplate.sh contains a utility which can generate angles, dihedrals, and impropers automatically by atom and bond type. (This utility is described in section F.) moltemplate.sh will inspect the network of bonds present in your system, detect all 3-body, and 4 -body interactions, and determine their type. (Higher n-body interactions can also be defined by the user.) Specifying interactions this way can eliminate significant redundancy since many atoms share the same type.

To make use of this feature, you would create a new section named "Angles By Type", "Dihedrals By Type", or "Impropers By Type" whose syntax mimics the "Angles", "Dihedrals", and "Impropers" sections of a LAMMPS data file. The syntax is best explained by example:

```
write("Data Angles By Type") {
    @angle:XCXgeneral * *C* *
    @angle:CCCgeneral @atom:C @atom:C @atom:C * *
    @angle:CCCsaturated @atom:C @atom:C @atom:C @bond:sp3 @bond:sp3
}
```

The first line will generate a 3 -body angle interaction (of type "@angle:XCXgeneral") between any 3 consecutively bonded atoms as long as the second atom's type-name contains the letter "C". (Atom and bond type-names can contain wildcard characters *)

The second line will generate a 3 -body interaction of type "@angle:CCCgeneral" between any 3 atoms of type "@atom:C", regardless of the type of bonds connecting them. (The last two columns, which are both wildcard characters, ${ }^{*}$, tell moltemplate.sh to ignore the two bond types. Since this is the default behavior these two columns are optional and can be omitted.)

The third line will generate a 3-body interaction of type "@angle:CCCsaturated" between any 3 atoms of type "@atom:C", if they are connected by bonds of type "@bond:sp3".

Note: The 2nd and 3rd lines in this example will generate new interactions which may override any angle interactions assigned earlier.

Regular expressions

Regular-expressions can also be used to match potential atom and bond types. (To use regular expressions, surround the atom and bond types on either side by slashes. For example: @atom:C[1-5]/, should match @atom:C1
through @atom:C6.) Note: This feature has not been tested as of 2014-1209.

In a similar way, one can define "Dihedrals By Type" and "Impropers By Type".

B Using ltemplify.py to create an $L T$ file

The "ltemplify.py" script can be used to convert existing simple LAMMPS input script and data files into a single ".LT" file. Users can pass one or more LAMMPS input scripts followed by a LAMMPS data file to the "ltemplify.py" script as arguments. (The data file must appear last in this list. See examples below.) All atoms, bonds, angles, dihedrals, and impropers and their associated types will be converted to moltemplate " $\$$ " or "@" counter variables, (and the relevant portion of each file will be moved to sections with the correct header names). Coefficients, atom styles, and most force-field styles and settings should also be included in the resulting .LT file. ltemplify.py also understands simple group commands (using "id", "molecule", or "type" styles) and "fix shake" and "fix rigid" (untested 2015-1-04). However most other fixes, and complex group commands are not understood. Those commands must be added to the resulting .LT file manually. (See section ??.)

Disclaimer

ltemplify.py is experimental software. The lemplify.py script has limited understanding of all of the features available in LAMMPS. Please look over the resulting ".LT" file and check for errors. (If necessary, convert any remaining atom, bond, angle, dihedral, or improper id or type numbers to the corresponding $\$$ or @ variables.) Some exotic pair styles which have their own special syntax are not understood. These coeffs must be converted manually. Support for "group" and "fix" commands is also limited. (See section B.2.) Please report errors in the behavior of ltemplify.py.

Reassigning variable names

Unfortunately, ltemplify.py does not attempt to pick good names for your atoms, bonds, or angles. Currently, ltemplify.py generates type names and id names automatically, resulting in atoms with names like "\$atom:id1753", and types like "@atom:type7". (Furthermore, if the user extracted only part of the data file, then these numbers probably do not begin at "1".)

Moltemplate will assign all of these variables to new numbers when you run it on your LT file later (so the names and numbers do not matter). Still, you may wish to use a text-editor (or sed) to replace all instances of "@atom:type7" with something more meaningful, like "@atom:CG1", and "@bond:type3" with "@bond:C=C".

B. 1 Examples

Example 1

ltemplify.py -name Mol file.in file.data > mol.lt
This creates a template for a new type of molecule (named "Mol"), consisting of all the atoms in the lammps files you included, and saves this data in a single LT file ("mol.lt"). This file can be used with moltemplate.sh (and/or ttree.py) to define large systems containing this molecule.

Note: The input script ("file.in" in this example) should appear before the data file ("file.data") in the argument list.

In many cases, a LAMMPS data file may contain many copies of the same molecule. In order to select one of these molecules you must manually indicate the atoms which belong to that molecule. To do that, use the following syntax:

Example 2

ltemplify.py -name Mol -molid "1" file.in file.data > mol.lt
In this example, only atoms belonging to molecule 1 are extracted.
This only works if you are using one of the "molecular" atom_styles. If you are using a different atom_style, you can select the atoms you want either by type or by id number. To do that use the following syntax:

Example 3

ltemplify.py -name Mol -atomtype "1 $359 * 12$ " lammpsfile.in lammpsfile.data > mol.lt
In this example, only atoms whose type is $1,3,5,9,10,11$, or 12 are included. (Pairs of numbers separated by "*" denote intervals.)

Example 4

ltemplify.py -name Mol -atomid "13 1415 61*69" \}
lammpsfile.in lammpsfile.data > mol.lt
In this example, only atoms whose $i d s$ are either $13,14,15$, or 61 through 69 are included. (Note: There is no limit to the number of atoms or intervals you can put between the quotes, except for the limit imposed by your shell. For example, the bash-shell that comes with cygwin restricts the length of commands you can type into the terminal to less than 32000 characters.)

B. 2 Fixes and Groups

ltemplify.py has limited support for "fix" and "group" commands, including "fix shake", "fix rigid", and "fix poems". Other fixes must be added manually to the file generated by ltemplify.py. (Such as fix "restrain", "bond/create", "bond/break", "ttm", etc...)
ltemplify.py can understand simple (static) "group" commands, and will include them in the output file, if it can determine that they contain any relevant atoms. (Fixes depending on irrelevant groups are also deleted.)

Note: This feature has not been tested carefully. So please review all of the group and fix commands generated by ltemplify.py to make sure they refer to the correct atoms. And please report any bugs you find. (-Andrew 2015-8-15)

B. 3 DATA files containing "Coeffs"

LAMMPS data files normally contain atomic coordinates, masses, charges, and bond-topology. However they may also contain force-field parameters. (If so, these force-field parameters are listed in sections of the data with names like "Pair Coeffs", "Bond Coeffs", "Angle Coeffs", ...)

However, force-field parameters are more commonly contained within input-script commands, and the ltemplify.py program looks for them there first. When ltemplify.py encounters a data file containing force-field parameters, it attempts to convert them to input-script commands. (For example, "Pair Coeffs" will be replaced with "pair_coeff" commands, "Bond Coeffs" will be replaced with "bond_coeff" commands, etc... Later, when moltemplate is run on the LT file created by ltemplify.py, these force-field parameters will be absent from the data file created by moltemplate.sh. Instead they will be converted to input script commands and written to the "system.in.settings" file. For details about how this is done, see section 9.9

Unfortunatley, for some exotic force-field styles, moltemplate may not understand the syntax in the data file and will generate incorrect inputscript commands. If your data file contains force-field parameters, it is a good idea to check the LT file created by ltemplify.py to see if it converted them correctly. Alternately you can use the "-datacoeffs" command-line option to prevent ltemplify.py from converting them. (See below)

If, for any reason, you prefer to keep the force-field-parameters in the data file, then run ltemplify.py using the "-datacoeffs" command-line argument. For example:
ltemplify.py -datacoeffs -name Mol file.in file.data > mol.lt
However, if you do this, then later you won't be able to combine the resulting LT file with other molecules (stored in other LT files) that don't put Coeffs in the data file. (That includes all the examples in this manual.)

B. 4 Limitations of ltemplify.py

Exotic styles are not supported

ltemplify.py does not understand the syntax of exotic many-body pair_styles such as tersoff, sw, meam, reax, dpd, edip, dipole, lubricate, hbond/dreiding (even though these styles are supported by moltemplate). After running ltemplify.py, the user must manually edit the resulting ".lt" files. For example: ltemplify.py will not understand wildcard characters ("*" characters)
which appear in the "pair_coeff" commands or "Pair Coeffs" section. You will have to remove the extra lines generated by ltemplify.py and put the wildcard characters back (eg "pair_coeff * * ...") manually. (Later the user may need to run moltemplate using the appropriate "-a" command line args to make sure the various atom types are assigned to the correct numbers. This is usually needed in order to keep them consistent with the order of parameters in the corresponding pair style's input files. See section D.1.) In addition, auxiliary atom types (such as the "hydrogen" atom type required by hbond/dreiding) If you are using the "hbond/dreiding" pair style, you will have to manually specify the atom type for the hydrogen-atom mediator in every "pair_coeff" command.

Wildcard characters ("*") expansion

As explained in section 10, moltemplate is often confused whenever wildcard characters ("*" characters) appear inside any of the the "coeff" commands (or "Coeff" sections of the data file). So ltemplify.py attempts to remove these characters and expand these commands, generating multiple lines of output, and listing each atom type explicitly. (This is also done for bond types, angle types, dihedral types, and improper types.) This may not be what you want. (For example, this can be a problem if you are using a pair style which requires you to specify "**" for the atom types, such as tersoff, eam, or sw.)

C Visualization in VMD

This appendix is only intended to give you a quick, minimal list of features you need to know to display your molecules using VMD. These instructions were written for VMD 1.9 and topotools 1.2. For advanced VMD features, analysis, and rendering options, consult the official VMD documentation at http://www.ks.uiuc.edu/Research/vmd/current/docs.html

C. 1 Customizing the appearance in VMD

By default, VMD is likely to display your molecules with points and lines, which can be ugly and difficult to see. To alter the appearance of your molecules, select the Graphics \rightarrow Representations... menu, and then select an option from the Drawing Method pull-down menu. Atoms are colored by atom-type by default. You can customize the color of each atom type by Graphics \rightarrow Colors... As of 2012-11-18, VMD arbitrarily allows you to assign colors to only the first 9 atom types. However you can get around this limitation using multiple representations customize the appearance of the remaining atom types (as explained below).

You may wish to use different representations for different molecules or atom types. To do this, select the Graphics \rightarrow Representations... menu and click on then Selections tab. Then click on the Create Rep button to create multiple "representations" of your system. For each representation, you can select different sets atoms, and use different draw-styles, for those
atoms. For example, you can customize the color of these atoms manually by choosing ColorID from the Coloring Method pull-down menu. Then, to the right of this menu, you can select the color (which is represented by a number). This will effect all of atoms in the current representation. You can also select a different Draw Style and alter the atom and bond radii.

You can select from the the list of representations you have already created by clicking on the list under the Create Rep button. (Doubleclicking temporarily hides a representation from view.)

Again, each representation is usually assigned to a different subset of atoms from the system. To specify the atoms in each representation, click on the Selections tab. By default "all" atoms are selected, however you can select atoms according to atom type, index, resid, charge, mass, $\mathbf{x}, \mathbf{y}, \mathbf{z}$. This will limit the current display settings to a subset of the atoms/bonds present in your system. When selecting atoms, you can use complex boolean expressions (containing one or more and and or operators and parenthesis). For more information and some examples, see http://www.ks.uiuc.edu/ Research/vmd/vmd-1.9/ug/node19.html and http://www.ks.uiuc.edu/ Research/vmd/vmd-1.9/ug/node87.html\#ug:topic:selections.

Note: In VMD/topotools, the type, index, and resid properties of each atom correspond to the @atom, \$atom, and $\$ \mathrm{~mol}$ variables for each atom in moltemplate. Unfortunately, VMD does not understand moltemplate variable naming syntax (discussed in section 5.2). Instead, in VMD, variables must be specified by their numeric equivalents. You can determine these numbers by reading the output_ttree/ttree_assignments.txt file. (See section D. 1 for details.) That file contains a table containing a list of the numbers assigned to each @atom (type), $\$$ atom (id), and $\$ \mathrm{~mol}$ (molecule-id) variable.

C. 2 Visualizing periodic boundaries

To view the periodic box boundaries, select the Extensions \rightarrow Tk Console menu, and in the Tk Console window, enter:
pbc box
Note that the molecules in your system might not lie inside this box. You can wrap them inside the box using this command:
pbc wrap -compound res -all
You may wish to center the box around a molecule. There are several ways to do this. You can move the box manually this way:

```
pbc wrap -compound res -all -shiftcenterrel {0.0 0.15 0.0}
```

pbc box -shiftcenterrel \{0.0 0.15 0.0\}
This will shift the position of the box by 15% in the Y direction. (Distances are measured in units of box-length fractions, not Angstroms.)
(Advanced usage: if you have a solute whose atoms are all of type " 1 ", surrounded by a solvent of atoms of type " 2 " then you can also try this to center the box around it using:"pbc wrap -sel type=1 -all -centersel type=2
-center com". The "1" and "2" are the @atom type numbers assigned by moltemplate. This can be found in the output_ttree/ttree_assignments.txt file. If you are viewing a trajectory, then this will modify the appearance of every step in the trajectory, centering the box around the solute atoms.)

For more details visualizing periodic-boundaries, visit: http://www.ks. uiuc.edu/Research/vmd/plugins/pbctools

To prevent atom overlap, you should also check if your periodic boundary conditions are too small. To do that:
a) select Graphics \rightarrow Representations menu option
b) click on the "Periodic" tab, and
c) click on the $+\mathbf{x},-\mathbf{x},+\mathbf{y},-\mathbf{y},+\mathbf{z},-\mathbf{z}$, and self checkboxes.

When doing so, inspect the system to make sure the atoms which appear occupy non-overlapping volumes in space.

D Advanced moltemplate.sh Usage

moltemplate.sh has several optional command line arguments. These are explained in below:

Usage:

```
moltemplate.sh [-atomstyle style] \
    [-pdb/-xyz/-raw coord_file] \
    [-a assignments.txt] file.lt
```

Optional arguments:
-atomstyle style By default, moltemplate.sh assumes you are using the "full"
atom style in LAMMPS. You can change the atom style to "dipole"
using -atomstyle dipole. If you are using a hybrid style,
you must enclose the list of styles in quotes. For example:
-atomstyle "hybrid full dipole"
For custom atom styles, you can also specify the
list of column names manually (enclosed in quotes):
-atomstyle "molid x y z atomid atomtype mux muy muz"
Be careful to enclose the entire list in quotes(").
-raw raw_file The raw_file file should contain the atomic coordinates in RAW format
RAW files are simple 3-column ASCII files containin the coordinates
for the atoms in the system. (One line per atom, 3 numbers per line.
The atoms must appear in the same order in the data file.)
-xyz xyz_file An xyz_file argument should be supplied as an argument
following "-xyz".
This file should contain the atomic coordinates in xyz format.
(The atoms must appear in the same order in the data file.)
-pdb pdb_file The pdb_file file should contain the atomic coordinates in PDB format
This file should contain one ATOM or HETATM record per atom. Atoms
are sorted by chainID, resID, insertCode, atomID (in that order).
This order must match the order the atoms appear in the data file.

If the PDB file contains periodic boundary box information (IE., a "CRYST1" record), this information is also copied to the LAMMPS data file.
(Support for triclinic cells is experimental as of 2014-12-09.
Other molecular structure formats may be supported later.
-a "@atom:x 1"
-a assignments.txt
The user can customize the numbers assigned to atom, bond, angle, dihedral, and improper types or id numbers by using -a "VARIABLE_NAME VALUE"
for each variable you want to modify. If there are many variables you want to modify, you can save them in a file (one variable per line). For an example of the file format run moltemplate.sh once and search for a file named "ttree_assignments.txt". (This file is often located in the "output_ttree/" directory.) Once assigned, the remaining variables in the same category will be automatically assigned to values which do not overlap with your chosen values.
-b assignments.txt
"-b" is similar to "-a". However, in this case, no attempt is made to assign exclusive (unique) values to each variable.
-nocheck
Normally moltemplate.sh checks for common errors and typos and halts if it thinks it has found one. This forces the variables and categories as well as write(file) and write_once(file) commands to obey standard naming conventions. The "-nocheck" argument bypasses these checks and eliminates these restrictions.

D. 1 Manual variables assignment ("-a" or "-b")

It is possible to manually customize the values assigned to the atom types (or to any other ttree-style variables). For example, consider the the "spce.lt" file shown earlier. This file defines a single water molecule with two atom types (hydrogen and oxygen). Typically the "O" atom type is normally assigned to the integer " 1 ", and " H " would be assigned to " 2 ". This is because "O" appears before "H" in that file. If you wanted to swap the order, you could swap the order in which they first appear.

Alternately you can specify the atom assignments directly using one or more "-a" flags followed by a quoted assignment string:
moltemplate.sh -a '@atom:SPCE/O 2' system.lt

This assigns the oxygen atom type to "2". Note that quotes are necessary around the '@atom:SPCE/O 2' string, which is a single argument. (Also note that it is necessary to include SPCE/ before the O, because in that example, this atom appeared (and was thus defined) inside the SPCE molecule's environment. Alternately, if it had been defined outside, globally, then you could refer to it using "@atom:O")

Variables need not be assigned to numbers. If for some reason, you want to substitute "a string" everywhere this atom type appears, you would do it this way:

```
moltemplate.sh -a '@atom:SPCE/O "a string"' system.lt
```

Multiple assignments can be made by using multiple "-a" flags:

```
moltemplate.sh -a '@atom:SPCE/O 2' -a '@atom:SPCE/H 1' system.lt
```

However if you have a large number of assignments to make, it may be more convenient to store them in a file. You can create a two-column text file (for example "new_assignments.txt") and run moltemplate this way:
moltemplate.sh -a new_assignments.txt system.lt
The contents of the "new_assignments.txt" file in this example would be:

```
@atom:SPCE/O 2
@atom:SPCE/H 1
```

The order of lines in this file does not matter.

Assigning \$angle, \$dihedral, \$improper variables

In general any kind of variable can be assigned this way (not only atom types), including \$mol, \$bond, @bond, @angle, \$angle, ... as well as userdefined variable type. Caveat: The only occasional exceptions are the \$angle, \$dihedral, \$improper variables. (When "Angles By Type" interactions are selected by the user, and mixed with regular "Angles", all of the \$angle variables are automatically generated. The same is true for "Dihedrals By Type" and "Impropers By Type". See section F for an explanation of "By Type" interactions.)

Angles, dihedrals, and impropers interactions are automatically generated, and in this case the user does not have the freedom to assign these variables.

The "-b" flag

Note that when using the "-a" flag above, care will be taken to insure that the assignment(s) are exclusive. None of the atom types (other than @atom:SPCE/O) will be assigned "2". (For this reason, using the "-a" flag to change the atom type assignments can, in principle, alter the numbers assigned other atom types, or variables.) This usually the desired behavior. However suppose, for some reason, that you wanted to force a variable assignment, so that other variables in the same category are not effected. In that case, you can use the "-b" flag:
moltemplate.sh -b '@atom:SPCE/O 2' system.lt
Keep in mind, that in this example, this could cause other atom-types (for example "@atom:SPCE/H") to be assigned to overlapping numbers.

The "ttree_assignments.txt" file

Generally, after running moltemplate.sh, a "ttree_assignments.txt" file will be created (or updated if it is already present) to reflect any changes you made. (This file is usually located in the "output_ttree/" directory. It can also be located the current directory "./".) You can always check this to make sure that the atom types (or any other tree variables) were assigned correctly.

The "ttree_assignments.txt" file has the same format as the "new_assignments.txt" file example above.

Note: In both files, an optional slash, "/", may follow the "@" or "\$" characters, as in "@/atom:SPCE/O". (This slash is optional and indicates the environment in which the counter is defined. The "@atom" counter is defined globally. The "\$resid" counter example described in section D. 2 is not.)

Bug-warning: Using the "delete" command may cause some of the instance variables (specifically the \$atom, \$mol, \$bond, \$angle, \$dihedral, and \$improper variables) to be numbered incorrectly. However static variables (beginning with @) should always be accurate. -Andrew 2013-4-07.

lttree.py and ttree.py also accept "-a" and "-b" flags

If for some reason, you are using "lttree.py" or "ttree.py" instead of "moltemplate.sh", then the "-a" and "-b" flags explained here also work with these scripts. They are not specific to moltemplate.sh.

D. 2 Customizing the counting method using category

Variables in ".lt" files are assigned to integers by default, starting with 1 , and incrementing by 1 . This can be overridden using the "category" command. For example, to create a new variable category named "distance" which starts at 0 and increments by 0.5 , you would include this command in your LT file:

```
category $distance(0.0, 0.5)
```

(This command should not be used with traditional counter categories like \$atom, \$bond, \$angle, \$dihedral, \$improper, \$mol, @atom, @bond, @angle, @dihedral, and @improper.)

D. 3 Creating local independent counters

By default variables in a given category are always assigned to unique integers. This can be overridden using the "category" command. For example, you might have a variable that keeps track of the position index of each residue in each protein chain. The first residue in a protein (N-terminus)
is assigned " 1 ", the second residue, " 2 ", etc, regardless of the number of protein chains in your system.

To do this, we can create a new variable category named "resid" which is defined within the scope of each instance of the "Protein" molecule:

```
Residue {
    write("Data Atoms") {
        $atom:CA @atom:CA $resid:. 0.0 0.0 0.0 0.0
        $atom:CB Qatom:CB $resid:. 0.0 1.53 0.0 0.0
    }
}
Protein {
    category $resid(1,1)
    residues = Residue[100]
}
proteins = Protein[10]
```

In this example, there are 10 proteins containing 100 residues each. The " $\$$ resid" counters will be replaced with integers in the range $1 \ldots 100$, (not $1 \ldots 1000$, as you might expect). Because the "\$resid" counter is local to the protein it is defined within, " $\$$ resid" variables in other proteins do not share the same counter, and can overlap.

D. 4 Counting order

Most variables are assigned automatically. By default static variables (@) are assigned in the order they appear in the file (or files, if multiple LT files are included). Subsequently, instance variables (\$) are assigned in the order they are created during instantiation. However you can customize the order in which they are assigned.

Ordering

LT files are parsed by moltemplate.sh/lttree.py in multiple stages. The "write_once()" and "write()" commands are carried out in the static and instance phases respectively, as explained below.

The static phase

In the "static" phase, "write_once()" statements are carried out in the order they are read from the user's input file(s) (regardless of whether or not they appear in nested classes). Any "include" commands will effect this order. After processing the class definitions, and carrying out the "write_once()" commands, lttree.py begins the instantiation phase.

The instantiation phase

During this phase, lttree.py makes copies of (instantiates) classes which were requested by the user using the "new" command. During this stage, lttree.py
also appends data to files using the "write" command. (In this manual, the "write()" and "new" are called instance commands.) The sequence of alternating "write()" and "new" commands in the order that they appear in the user's input file(s). "new" commands recursively invoke any instance commands for each copy of the class they create.

Again, the counting of instance variables (prefixed by "\$") does not interfere with static variable assignment. For example "@atom:x" and "\$atom:x" correspond to different variables and belong to different variable categories ("@atom" and "\$atom") and they are assigned to numerical values independently.

E Using lttree.py or ttree.py directly

(bypassing moltemplate.sh)

"moltemplate.sh" is only a simple script which invokes "lttree.py", and then combines the various output files generated by lttree.py into a single LAMMPS input script and a data file, along with coordinate data. "Ittree.py" then invokes "ttree.py". "ttree.py" lacks the ability to read or generate coordinates, but is otherwise nearly identical to "lttree.py" and "moltemplate.sh".

If in the future moltemplate.sh no longer works with some new, recently added LAMMPS feature, you can bypass moltemplate.sh and run lttree.py or ttree.py directly. Everything moltemplate.sh does can essentially be done by hand with a unix shell and a text editor. This procedure is outlined below.

E. 1 First run ttree.py

The syntax for running "ttree.py" is identical to the syntax for running moltemplate.sh. The moltemplate.sh syntax is explained above.

Unfortunately, ttree.py does not understand the -pdb, -xyz, or -raw arguments for processing coordinate data. If you run "ttree.py" directly, then you must extract the coordinate data from these files yourself and insert it into your lammps input files manually. This is explained below.

Example: Go to the examples/waterSPCE/ directory and run:
ttree.py system.lt
This will prepare LAMMPS input files for a system of 32 water molecules. (In this example, we are using the "SPCE" water model.)

Running the command above will probably create the following files: "Data Atoms" (The "Atoms" section of a LAMMPS data file, w/o coordinates) "Data Bonds" (The "Bonds" section of a LAMMPS data file) "Data Angles" (The "Angles" section of a LAMMPS data file) "Data Masses" (The "Masses" section of a LAMMPS data file) "In Init" (The "Initialization" section of a LAMMPS input script.) "In Settings" (The "Settings" section of a LAMMPS input script, which typically contains force-field parameters, group defs, and constraints) "Data Boundary" (The "Periodic Boundary Conditions" section of a LAMMPS data file.) "ttree_assignments.txt" (Variable assignments. See "customization" section.)

This data can be easily combined into a single LAMMPS data file and a single lammps input script later on, using a text editor, or the unix "cat" and "paste" commands.

It may also create these files: "Data Angles By Type", "Data Dihedrals By Type", "Data Impropers By Type". These files tell moltemplate how to automatically generate bonded-interactions by atom and bond type. They must be converted to lists of angles, dihedrals, and impropers, using the "nbody_by_type.py" utility (as explained in appendix A).

E. 2 Then create a LAMMPS data file

Create a new file ("system.data" in this example), and paste the following text into it:

Create the "header" section

Example:
LAMMPS Description

```
    96 atoms
    6 4 ~ b o n d s
    32 angles
    0 dihedrals
    2 atom types
    1 bond types
    1 angle types
    O dihedral types
0.000000 9.043 xlo xhi
0.000000 15.663 ylo yhi
0.000000 7.361 zlo zhi
```

If you use ttree.py, will have to count the number of atoms, bonds, and atom types, bond types etc. yourself.

Note: the numbers in the "xlo xhi" "ylo yhi" "zlo zhi" lines determine the simulation box size, and will vary from system to system. If ttree created a file named "Data Boundary", you can copy this information from there. (Triclinic cells have a fourth line containing the "xy xz yz" parameters.) (If you have a .PDB file, these boundary box numbers are in the "CRYST1" line near the beginning of the file.)

Once you've created the "header" section of the data file, paste the other sections to the end of your LAMMPS data file (with the appropriate section headings and blank lines).

```
echo "" >> system.data
echo "Atoms" >> system.data
echo "" >> system.data
cat "Data Atoms" >> system.data
```

```
echo "" >> system.data
echo "Bonds" >> system.data
echo "" >> system.data
cat "Data Bonds" >> system.data
echo "" >> system.data
echo "Angles" >> system.data
echo "" >> system.data
cat "Data Angles" >> system.data
echo "" >> system.data
echo "Masses" >> system.data
echo "" >> system.data
cat "Data Masses" >> system.data
echo "" >> system.data
```

Depending on your system, you may also have these files as well: "Data Dihedrals" "Data Impropers" "Data Bond Coeffs" "Data Angle Coeffs" "Data Dihedral Coeffs" "Data Improper Coeffs". If so, then then append them to the end of your data file as well. (There are numerous other optional sections for "class2" force-fields. Exotic atom styles also require their own sections such as "lines" "ellipsoids" and "triangles". Consult the LAMMPS documentation for details on these as well.)

E. 3 Now create the LAMMPS input script

```
echo "include \"In Init\"" > system.in
echo "read_data system.data" >> system.in
echo "include \"In Settings\"" >> system.in
```

Lastly, you have to worry about supplying the atomic coordinates. (Unlike moltemplate, ttree.py does not handle atom coordinates.)

The following commands are useful for extracting coordinates from PDB or XYZ files and converting them to LAMMPS input script commands:

E. 4 Extract coordinates

To extract coordinates from a .PDB file ("file.pdb"), use:

```
awk '/^ATOM |`HETATM/{print substr($0,31,8) \
                                    " "substr($0,39,8) \
                                    " "substr($0,47,8)}' \
    < file.pdb \
    > tmp_atom_coords.dat
```

(Note: There should be two spaces following the word "ATOM" above.) To extract coordinates from an XYZ file ("file.xyz"), use:

```
awk 'function isnum(x){return(x==x+0)} \
    BEGIN{targetframe=1;framecount=0} \
    {if (isnum($0)) {framecount++} else \
        {if (framecount==targetframe) { \
```

```
    if (NF>0) { \
    if ((NF==3) && isnum($1)) { \
        print $1" "$2" "$3} \
    else if ((NF==4) && isnum($2)) { \
        print $2" "$3" "$4} }}}}' \
< file.xyz \
> tmp_atom_coords.dat
```


E. 5 Convert the coordinate file to LAMMPS input script format

```
awk '{if (NF>=3) { \
    natom++; print "set atom "natom" x "$1" y "$2" z "$3" "}}' \
    < tmp_atom_coords.dat \
    >> system.in.coords
```

Finally import "system.in.coords" in your lammps input script using:

```
echo "include \"system.in.coords\"" >> system.in
```


F Using the nbody_by_type.py utility

(bypassing moltemplate.sh)

moltemplate.sh uses the "nbody_by_type.py" utility to generate many-body interactions between bonded atoms by atom type. In the event that moltemplate.sh crashes or is not up-to-date with LAMMPS, you can assign interactions by type by manually invoking nbody_by_type.py yourself.

As an example, the following command will generate a file "Angles" containing lines of text which should eventually be pasted into the "Angles" section of a LAMMPS data file:

```
nbody_by_type Angles \
    -atoms "Data Atoms" \
    -bonds "Data Bonds" \
    -subgraph "nbody_Angles.py" \
    -nbodybytype "Data Angles By Type" \
    > "Data Angles"
```

For dihedral or improper interactions, repeat the command above, and replace "Angles" with "Dihedrals", or "Impropers" everywhere.

Note: The above instructions work assuming that you do not use any wildcard characters ("*" or "?") or regular expressions in your "Angles By Type" section. If you use wildcards or regular expressions, then you must run the program this way:
nbody_by_type Angles \}
-atoms "Data Atoms.template" \}
-bonds "Data Bonds.template" \}
-subgraph "nbody_Angles.py" \}

```
-nbodybytype "Data Angles By Type.template" \
> "Data Angles.template"
```

Afterwards, you must then replace each variable in the "Angles.template" file with the appropriate integer before you copy the contents into the LAMMPS data file. (The ttree_render.py program may be useful for this. Open the moltemplate.sh file with a text editor to see how this was done.)

Note that "Data Atoms", and "Data Bonds" refer to files which are normally created by "ttree.py" or "lttree.py" which contain atom and bond data in LAMMPS data file format, respectively. Similarly "Data Angles By Type" refers to a file containing instructions for how to automatically generate angles by atom type. (Again, this would typically be generated by running "ttree.py" or "lttree.py" on an LT file containing a block of text wrapped inside a "write_once('Data Angles By Type')" command.)

Note: if you already have existing "Data Angles", you can add them to the list of angle interactions created by nbody_by_type.py.

```
nbody_by_type Angles \
    -atoms "Data Atoms" \
    -bonds "Data Bonds" \
    -subgraph "nbody_Angles.py" \
    -nbodyfile "Data Angles" \
    -nbodybytype "Data Angles By Type" \
    > extra_Angles.tmp
cat extra_Angles.tmp "Data Angles" > new_Angles
mv -f new_Angles "Data Angles"
rm -f extra_Angles.tmp
```


F. 1 Usage

For reference, the complete man page for the "nbody_by_type.py" command is included below.

```
nbody_by_type.py reads a LAMMPS data file (or an excerpt of a LAMMPS)
data file containing bonded many-body interactions by atom type
(and bond type), and generates a list of additional interactions
in LAMMPS format consistent with those type (to the standard out).
Typical Usage:
nbody_by_type.py X < old.data > new.data
--or--
nbody_by_type.py X \
    -atoms atoms.data \
    -bonds bonds.data \
    -subgraph "nbody_X.py" \
    -nbody X.data \
```

```
-nbodybytype X_by_type.data
> new_X.data
```

In both cases "X" denotes the interaction type, which is either "Angles", "Dihedrals", or "Impropers".
Support for other interaction types can be added by the user. See below.

Note: The optional "-subgraph" argument allows you to customize the rules used to match and generate interactions of that type. It is optional, and is only useful for forcefields which use non-standard dihedral or improper atom-order convetions.)

```
-------- Example 1 --------
nbody_by_type.py X < old.data > new.data
```

In this example, nbody_by_type.py reads a LAMMPS data file "orig.data", and extracts the relevant section ("Angles", "Dihedrals", or "Impropers"). It also looks a section named "X By Type",
(eg. "Angles By type", "Impropers By type", "Impropers By type") which contains a list of criteria for automatically defining additional interactions of that type. For example, this file might contain:

Angle By Type
7121 * *
82 2 * * *
9343 * *

The first column is an interaction type ID.
The next 3 columns are atom type identifiers.
The final 2 columns are bond type identifiers.
The * is a wildcard symbol indicating there is no preference for bond types in this example. (Optionally, regular expressions can also be used to define a type match, by enclosing the atom or bond type in / slashes.)

The first line tells us to that there should be a 3-body "Angle" interaction of type " 7 " whenever an atom of type 1 is bonded to an atom of type "2", which is bonded to another atom of type "1" again. The second line tells us that an angle is defined whenever three atoms are bonded together and the first two are of type "2". (Redundant angle interactions are filtered.)

New interactions are created for every group of bonded atoms which match these criteria if they are bonded together in the relevant way for that interaction type (as determined by nbody_X.py), and printed to the standard output. For example, suppose you are automatically generating 3-body "Angle" interactions using:

```
nbody_by_type Angles < old.data > new.data
The file "new.data" will be identical to "old.data", however the
"Angles By Type" section will be deleted, and the following lines of
text will be added to the "Angles" section:
```

3947598358945895
3957598458955896
3967598558965897
: : : : :
8479148271484814849

The numbers in the first column are counters which assign a ID to every interaction of that type, and start where the original "Angles" data left off (New angle ID numbers do not overlap with old ID numbers). The text in the second column ("7", "9", ...) matches the text from the first column of the "Angle By Type" section of the input file.
-------- Example 2 --------
nbody_by_type.py X \}
-atoms atoms.data \}
-bonds bonds.data \}
-subgraph "nbody_X.py" \}
-nbody X.data \}
-nbodybytype X_by_type.data \}
> new_X.data

In particular, for Angle interactions:

```
nbody_by_type.py Angles \
    -atoms atoms.data \
    -bonds bonds.data \
    -subgraph "nbody_Angles.py" \
    -nbody angles.data \
    -nbodybytype angles_by_type.data \
    > new_Angles.data
```

When run this way, nbody_by_type.py behaves exactly the same way as in Example 1, however only the lines of text corresponding to the new generated interactions are printed, (not the entire data file). Also note, that when run this way, nbody_by_type.py does not read the LAMMPS data from the standard input. Instead, it reads each section of the data file from a different file indicated by the arguments following the "-atoms", "-bonds", "-nbody", and "-nbodybytype" flags.
"Angles" is a 3-body interaction style. So when run this way,

```
    nbody_by_type.py will create a 5 (=3+2) column file (new_Angles.data).
Note: the atom, bond and other IDs/types in need not be integers.
Note: This program must be distributed with several python modules, including:
    nbody_Angles.py, nbody_Dihedrals.py, and nbody_Impropers.py. These
    contain bond definitions for angular, dihedral, and improper interactions.
```


F. 2 Custom bond topologies

Currently nbody_by_type.py can detect and generate "Angle" and "Dihedral" interactions between 3 and 4 consecutively bonded atoms. It can also generate "Improper" interactions between 4 atoms bonded with a T-shaped topology (one central atom with 3 branches). The nbody_by_type.py script imports external modules named "nbody_Angles.py", "nbody_Dihedrals.py", and "nbody_Impropers.py" to help it detect angles, dihedrals, and improper interactions automatically. In case any new interaction types are ever added to LAMMPS, it is easy to define new bonded interaction types by suplying a new "nbody_X.py" python modules. These python files are usually only a few lines long. Copy one of the existing modules "nbody_Angles.py", "nbody_Dihedrals.py", or "nbody_Impropers.py") and modify it to the subgraph inside to match the bonded network that you want to search for.

G Variable syntax details

Counter variables have names like:

\$cpath/catname:lpath

or
@cpath/catname:lpath
(Note: All of the variable examples in this appendix can refer to either static @ variables or instance $\$$ variables. Both variable types obey the same syntax rules. For brevity, only the instance $\$$ variables are shown.)

All counter variables have 3 parts:
cpath, the category scope object (which is usually omitted) catname, the category name
lpath, the "leaf path". This includes the variable's name and (optionally) the location of that variable in the object tree relative to the object in which the variable is referenced (the current-context object)

Typically the cpath is omitted, in which case it means that the category has global scope. (This is true for all of the standard counter variable types: "@atom", "\$atom","\$mol", "@bond", "\$bond", "@angle", "\$angle", "@dihedral", "\$dihedral", "@improper", and "\$improper".) However the cpath can be specified explicitly, as in this example:"\$/atom:" ("/" denotes explicitly that the counter has global scope). Another example with an explicit cpath is the custom local counter variable named "\$/proteins[5]/resid:."
(See section D.3.) In this example, the cpath is " $\$ /$ proteins[5]", the catname is "resid", and the lpath is ".". (In section D.3, we never explicitly specified the cpath. This is a source of confusion. When cpath is omitted, then the program searches up the tree for an ancestor node containing a category with a matching catname. Consequently the cpath rarely ever needs to be stated explicitly. See section G. 2 for more details.)

G. 1 General variable syntax

The ellipsis ("...") commonly appears in counter variables (or it is implied). The most complex and general variable syntax is:
\$cpath/.../catname:lpath
This means: find the closest ancestor of the cpath object containing a category named "catname". This ancestor determines the category's scope. Counter variables in this category are local to ancestors of that object. In this usage example, lpath identifies the location of the variable's corresponding "leaf" object relative to the category scope object (cpath). On the other hand, if the the category's scope (cpath) was not explicitly stated by the user (which is typical), then the lpath identifies the location of the leaf object relative to the object in which the variable was referenced (the current-context ".").

G. 2 Variable shorthand equivalents

\$catname:lpath is equivalent to "\$.../catname:lpath"

This means: find the closest direct ancestor of the current object containing a category whose name matches catname. If not found, create a new category (at the global level). This is the syntax used most frequently in LT files.

If the colon is omitted, as in $\$ \boldsymbol{l} \boldsymbol{p a t h} /$ catname, then it is equivalent to: \$catname:lpath. Again, in these cases, lpath is a path which is relative to the object in which the variable was referenced.

If $\$ \boldsymbol{l} \boldsymbol{p a t h}$ is omitted, then this is equivalent to $\$ \boldsymbol{c a t n a m e}:$. In other words, the the leaf node is the current node, ".". (This syntax is often used to count keep track of molecule ID numbers. You can use the counter variable "\$mol" to keep track of the current molecule id number, because it counts the molecular objects in which this variable was defined. In this case the name of the category is "mol". As in most examples, the category object, cpath, is not specified. This means the category object is automatically global. A global category object means that every molecule object is given a unique ID number which is unique for the entire system, not just unique within some local molecule. As a counter-example, consider amino acid residue counters. Each amino acid in a protein can be assigned a residue ID number which identifies it within a single protein chain. However because their category was defined locally at the protein level, these residue ID numbers are not global, and are not uniquely defined if there are multiple protein chains present.)

\$cpath/catname:lpath/...

(SHORTHAND equivalent)

Find the category name and object corresponding to "\$cpath/catname:" (see above) If $\$ \boldsymbol{c p a t h} /$ is blank, then search for an ancestor with a category whose name matches catname, as described above. To find the variable's corresponding "leaf object", start from the CURRENT object (not the category object). If lpath is not empty, follow lpath to a new position in the tree. Otherwise, start at the current object. (An empty lpath corresponds to the current object.) From this position in the object tree search for a direct ancestor which happens to also be "leaf object" for some other variable which belongs to the desired category. If no such variable is found, then ttree creates a new variable whose leaf object is the object at the lpath position, and put it in the desired category.

\$lpath/.../catname is equivalent to \$catname:lpath/...

(SHORTHAND equivalent)
If lpath is omitted, then start from the current node. (In the molecular examples, " $\$ \ldots / \mathrm{mol}$ " is a variable whose category name is "mol". The "leaf object" for the variable is either the current object in which this variable was defined, OR a direct ancestor of this object which has been assigned to a variable belonging to the category named "mol". In this way large objects (large molecules) can be comprised of smaller objects, without corrupting the "mol" counter which keeps track of which molecule we belong to. In other words, "\$.../mol" unambiguously refers to the ID\# of the large molecule to which this sub-molecule belongs (regardless of however many layers up that may be).)

\$cpath/catname:lpath

Variables in the output_ttree/ttree_assignments.txt file use the this syntax.
If the user explicitly specifies the path leading up to the cat node, and avoids using "...", then lpath is interpreted relative to the category object, not the current object (however cpath is interpreted relative to the current object). This happens to be the format used in the "ttree_assignments.txt" file (although you can use it anywhere else in an ".LT" file). In "ttree_assignments.txt" file, cpath is defined relative to the global object. The variables in that file always begin with " $\$ /$ " or "@/". The slash at the beginning takes us to the global environment object (to which all the other objects belong). (Since the variables in the "ttree_assignments.txt" always begin with " $\$ /$ " or "@/", this distinction is usually not important because the category object for most variables usually is the "global" root object.)

References

[1] Axel Kohlmeyer. The TopoTools VMD plugin. http://sites.google. com/site/akohlmey/software/topotools/.
[2] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD - Visual Molecular Dynamics. Journal of Molecular Graphics, 14:33-38, 1996. http://www.ks.uiuc.edu/Research/vmd.
[3] L. Martnez, R. Andrade, E. G. Brigin, and J. M. Martnez. Packmol: A package for building initial configurations for molecular dynamics simulations. J. Comp. Chem., 30(13):2157-2164, 2009. http: //www.ime.unicamp.br/~martinez/packmol/.
[4] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. J. Phys. Chem., 91(24):6269-6271, 1987.
[5] Marcus G. Martin and J. Ilja Siepmann. Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J. Phys. Chem. B, 102(14):2569-2577, 1998.

