<li>zero or more keyword/value pairs may be appended to args</li>
<li>keyword = <em>region</em></li>
</ul>
<preclass="literal-block">
<em>region</em> value = region-ID
region-ID = ID of region atoms must be in to have added force
</pre>
</div>
<divclass="section"id="examples">
<h2>Examples</h2>
<preclass="literal-block">
fix pressdown topwall aveforce 0.0 -1.0 0.0
fix 2 bottomwall aveforce NULL -1.0 0.0 region top
fix 2 bottomwall aveforce NULL -1.0 v_oscillate region top
</pre>
</div>
<divclass="section"id="description">
<h2>Description</h2>
<p>Apply an additional external force to a group of atoms in such a way
that every atom experiences the same force. This is useful for
pushing on wall or boundary atoms so that the structure of the wall
does not change over time.</p>
<p>The existing force is averaged for the group of atoms, component by
component. The actual force on each atom is then set to the average
value plus the component specified in this command. This means each
atom in the group receives the same force.</p>
<p>Any of the fx,fy,fz values can be specified as NULL which means the
force in that dimension is not changed. Note that this is not the
same as specifying a 0.0 value, since that sets all forces to the same
average value without adding in any additional force.</p>
<p>Any of the 3 quantities defining the force components can be specified
as an equal-style <aclass="reference internal"href="variable.html"><spanclass="doc">variable</span></a>, namely <em>fx</em>, <em>fy</em>, <em>fz</em>.
If the value is a variable, it should be specified as v_name, where
name is the variable name. In this case, the variable will be
evaluated each timestep, and its value used to determine the average
force.</p>
<p>Equal-style variables can specify formulas with various mathematical
functions, and include <aclass="reference internal"href="thermo_style.html"><spanclass="doc">thermo_style</span></a> command
keywords for the simulation box parameters and timestep and elapsed
time. Thus it is easy to specify a time-dependent average force.</p>
<p>If the <em>region</em> keyword is used, the atom must also be in the
specified geometric <aclass="reference internal"href="region.html"><spanclass="doc">region</span></a> in order to have force added
to it.</p>
<hrclass="docutils"/>
<p>Styles with a suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in
<aclass="reference internal"href="Section_accelerate.html"><spanclass="doc">Section_accelerate</span></a> of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.</p>
<p>These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the <aclass="reference internal"href="Section_start.html#start-3"><spanclass="std std-ref">Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <aclass="reference internal"href="Section_start.html#start-7"><spanclass="std std-ref">-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <aclass="reference internal"href="suffix.html"><spanclass="doc">suffix</span></a> command in your input script.</p>
<p>See <aclass="reference internal"href="Section_accelerate.html"><spanclass="doc">Section_accelerate</span></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
<hrclass="docutils"/>
<p><strong>Restart, fix_modify, output, run start/stop, minimize info:</strong></p>
<p>No information about this fix is written to <aclass="reference internal"href="restart.html"><spanclass="doc">binary restart files</span></a>.</p>
<p>The <aclass="reference internal"href="fix_modify.html"><spanclass="doc">fix_modify</span></a><em>respa</em> option is supported by this
fix. This allows to set at which level of the <aclass="reference internal"href="run_style.html"><spanclass="doc">r-RESPA</span></a>
integrator the fix is adding its forces. Default is the outermost level.</p>
<p>This fix computes a global 3-vector of forces, which can be accessed
by various <aclass="reference internal"href="Section_howto.html#howto-15"><spanclass="std std-ref">output commands</span></a>. This is the
total force on the group of atoms before the forces on individual
atoms are changed by the fix. The vector values calculated by this
fix are “extensive”.</p>
<p>No parameter of this fix can be used with the <em>start/stop</em> keywords of
the <aclass="reference internal"href="run.html"><spanclass="doc">run</span></a> command.</p>
<p>The forces due to this fix are imposed during an energy minimization,
invoked by the <aclass="reference internal"href="minimize.html"><spanclass="doc">minimize</span></a> command. You should not
specify force components with a variable that has time-dependence for
use with a minimizer, since the minimizer increments the timestep as
Built with <ahref="http://sphinx-doc.org/">Sphinx</a> using a <ahref="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <ahref="https://readthedocs.org">Read the Docs</a>.