<li>Tstart,Tstop = desired temperature at start/end of run (temperature units)</li>
<li>cutoff = global cutoff for DPD interactions (distance units)</li>
<li>seed = random # seed (positive integer)</li>
</ul>
</div>
<div class="section" id="examples">
<h2>Examples</h2>
<pre class="literal-block">
pair_style dpd 1.0 2.5 34387
pair_coeff * * 3.0 1.0
pair_coeff 1 1 3.0 1.0 1.0
</pre>
<pre class="literal-block">
pair_style dpd/tstat 1.0 1.0 2.5 34387
pair_coeff * * 1.0
pair_coeff 1 1 1.0 1.0
</pre>
</div>
<div class="section" id="description">
<h2>Description</h2>
<p>Style <em>dpd</em> computes a force field for dissipative particle dynamics
(DPD) following the exposition in <a class="reference internal" href="#groot"><span class="std std-ref">(Groot)</span></a>.</p>
<p>Style <em>dpd/tstat</em> invokes a DPD thermostat on pairwise interactions,
which is equivalent to the non-conservative portion of the DPD force
field. This pair-wise thermostat can be used in conjunction with any
<a class="reference internal" href="pair_style.html"><span class="doc">pair style</span></a>, and in leiu of per-particle thermostats
like <a class="reference internal" href="fix_langevin.html"><span class="doc">fix langevin</span></a> or ensemble thermostats like
Nose Hoover as implemented by <a class="reference internal" href="fix_nh.html"><span class="doc">fix nvt</span></a>. To use
<em>dpd/tstat</em> as a thermostat for another pair style, use the <a class="reference internal" href="pair_hybrid.html"><span class="doc">pair_style hybrid/overlay</span></a> command to compute both the desired
pair interaction and the thermostat for each pair of particles.</p>
<p>For style <em>dpd</em>, the force on atom I due to atom J is given as a sum
<p>The last coefficient is optional. If not specified, the global DPD
cutoff is used. Note that sigma is set equal to sqrt(2 T gamma),
where T is the temperature set by the <a class="reference internal" href="pair_style.html"><span class="doc">pair_style</span></a>
command so it does not need to be specified.</p>
<p>For style <em>dpd/tstat</em>, the coefficiencts defined for each pair of
atoms types via the <a class="reference internal" href="pair_coeff.html"><span class="doc">pair_coeff</span></a> command is the same,
except that A is not included.</p>
<p>The GPU-accelerated versions of these styles are implemented based on
the work of <a class="reference internal" href="#afshar"><span class="std std-ref">(Afshar)</span></a> and <a class="reference internal" href="#phillips"><span class="std std-ref">(Phillips)</span></a>.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">If you are modeling DPD polymer chains, you may want to use the
<a class="reference internal" href="pair_srp.html"><span class="doc">pair_style srp</span></a> command in conjuction with these pair
styles. It is a soft segmental repulsive potential (SRP) that can
prevent DPD polymer chains from crossing each other.</p>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The virial calculation for pressure when using this pair style
includes all the components of force listed above, including the
random force.</p>
</div>
<hr class="docutils" />
<p>Styles with a <em>gpu</em>, <em>intel</em>, <em>kk</em>, <em>omp</em>, or <em>opt</em> suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in <a class="reference internal" href="Section_accelerate.html"><span class="doc">Section_accelerate</span></a>
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.</p>
<p>These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the <a class="reference internal" href="Section_start.html#start-3"><span class="std std-ref">Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <a class="reference internal" href="Section_start.html#start-7"><span class="std std-ref">-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <a class="reference internal" href="suffix.html"><span class="doc">suffix</span></a> command in your input script.</p>
<p>See <a class="reference internal" href="Section_accelerate.html"><span class="doc">Section_accelerate</span></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
<p>These pair styles do not support mixing. Thus, coefficients for all
I,J pairs must be specified explicitly.</p>
<p>These pair styles do not support the <a class="reference internal" href="pair_modify.html"><span class="doc">pair_modify</span></a>
shift option for the energy of the pair interaction. Note that as
discussed above, the energy due to the conservative Fc term is already
shifted to be 0.0 at the cutoff distance Rc.</p>
<p>The <a class="reference internal" href="pair_modify.html"><span class="doc">pair_modify</span></a> table option is not relevant
for these pair styles.</p>
<p>These pair style do not support the <a class="reference internal" href="pair_modify.html"><span class="doc">pair_modify</span></a>
tail option for adding long-range tail corrections to energy and
pressure.</p>
<p>These pair styles writes their information to <a class="reference internal" href="restart.html"><span class="doc">binary restart files</span></a>, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file. Note
that the user-specified random number seed is stored in the restart
file, so when a simulation is restarted, each processor will
re-initialize its random number generator the same way it did
initially. This means the random forces will be random, but will not
be the same as they would have been if the original simulation had
continued past the restart time.</p>
<p>These pair styles can only be used via the <em>pair</em> keyword of the
<a class="reference internal" href="run_style.html"><span class="doc">run_style respa</span></a> command. They do not support the
<p>The <em>dpd/tstat</em> style can ramp its target temperature over multiple
runs, using the <em>start</em> and <em>stop</em> keywords of the <a class="reference internal" href="run.html"><span class="doc">run</span></a>
command. See the <a class="reference internal" href="run.html"><span class="doc">run</span></a> command for details of how to do
this.</p>
</div>
<hr class="docutils" />
<div class="section" id="restrictions">
<h2>Restrictions</h2>
<p>The default frequency for rebuilding neighbor lists is every 10 steps
(see the <a class="reference internal" href="neigh_modify.html"><span class="doc">neigh_modify</span></a> command). This may be too
infrequent for style <em>dpd</em> simulations since particles move rapidly
and can overlap by large amounts. If this setting yields a non-zero
number of “dangerous” reneighborings (printed at the end of a
simulation), you should experiment with forcing reneighboring more
often and see if system energies/trajectories change.</p>
<p>These pair styles requires you to use the <a class="reference internal" href="comm_modify.html"><span class="doc">comm_modify vel yes</span></a> command so that velocites are stored by ghost
atoms.</p>
<p>These pair styles will not restart exactly when using the
<a class="reference internal" href="read_restart.html"><span class="doc">read_restart</span></a> command, though they should provide
statistically similar results. This is because the forces they
compute depend on atom velocities. See the
<a class="reference internal" href="read_restart.html"><span class="doc">read_restart</span></a> command for more details.</p>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.