<span id="index-0"></span><h1>pair_style lj/smooth command<a class="headerlink" href="#pair-style-lj-smooth-command" title="Permalink to this headline">¶</a></h1>
<p>The polynomial coefficients C1, C2, C3, C4 are computed by LAMMPS to
cause the force to vary smoothly from the inner cutoff Rin to the
outer cutoff Rc.</p>
<p>At the inner cutoff the force and its 1st derivative
will match the unsmoothed LJ formula. At the outer cutoff the force
and its 1st derivative will be 0.0. The inner cutoff cannot be 0.0.</p>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">this force smoothing causes the energy to be
discontinuous both in its values and 1st derivative. This can lead to
poor energy conservation and may require the use of a thermostat.
Plot the energy and force resulting from this formula via the
<a class="reference internal" href="pair_write.html"><em>pair_write</em></a> command to see the effect.</p>
</div>
<p>The following coefficients must be defined for each pair of atoms
types via the <a class="reference internal" href="pair_coeff.html"><em>pair_coeff</em></a> command as in the examples
above, or in the data file or restart files read by the
<a class="reference internal" href="read_data.html"><em>read_data</em></a> or <a class="reference internal" href="read_restart.html"><em>read_restart</em></a>
commands, or by mixing as described below:</p>
<ul class="simple">
<li>epsilon (energy units)</li>
<li>sigma (distance units)</li>
<li>innner (distance units)</li>
<li>outer (distance units)</li>
</ul>
<p>The last 2 coefficients are optional inner and outer cutoffs. If not
specified, the global values for Rin and Rc are used.</p>
<hr class="docutils" />
<p>Styles with a <em>cuda</em>, <em>gpu</em>, <em>intel</em>, <em>kk</em>, <em>omp</em>, or <em>opt</em> suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a>
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.</p>
<p>These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL,
KOKKOS, USER-OMP and OPT packages, respectively. They are only
enabled if LAMMPS was built with those packages. See the <a class="reference internal" href="Section_start.html#start-3"><span>Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <a class="reference internal" href="Section_start.html#start-7"><span>-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <a class="reference internal" href="suffix.html"><em>suffix</em></a> command in your input script.</p>
<p>See <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
<p>For atom type pairs I,J and I != J, the epsilon, sigma, Rin
coefficients and the cutoff distance for this pair style can be mixed.
Rin is a cutoff value and is mixed like the cutoff. The other
coefficients are mixed according to the pair_modify mix option. The
default mix value is <em>geometric</em>. See the “pair_modify” command for
details.</p>
<p>This pair style supports the <a class="reference internal" href="pair_modify.html"><em>pair_modify</em></a> shift
option for the energy of the pair interaction.</p>
<p>The <a class="reference internal" href="pair_modify.html"><em>pair_modify</em></a> table option is not relevant
for this pair style.</p>
<p>This pair style does not support the <a class="reference internal" href="pair_modify.html"><em>pair_modify</em></a>
tail option for adding long-range tail corrections to energy and
pressure, since the energy of the pair interaction is smoothed to 0.0
at the cutoff.</p>
<p>This pair style writes its information to <a class="reference internal" href="restart.html"><em>binary restart files</em></a>, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.</p>
<p>This pair style can only be used via the <em>pair</em> keyword of the
<a class="reference internal" href="run_style.html"><em>run_style respa</em></a> command. It does not support the
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.