Page MenuHomec4science

ATC_Method.h
No OneTemporary

File Metadata

Created
Wed, Oct 2, 11:04

ATC_Method.h

#ifndef ATC_METHOD_H
#define ATC_METHOD_H
// ATC_Method headers
#include "ATC_TypeDefs.h"
#include "PhysicsModel.h"
#include "MatrixLibrary.h"
#include "Array.h"
#include "Array2D.h"
#include "OutputManager.h"
#include "Function.h"
#include "FE_Element.h"
#include "TimeFilter.h"
#include "LammpsInterface.h"
#include "FE_Engine.h"
#include "ExtrinsicModel.h"
#include "InterscaleOperators.h"
#include "TransferLibrary.h"
// Other headers
#include <vector>
#include <set>
using namespace std;
using LAMMPS_NS::Fix;
namespace ATC {
/**
* @class ATC_Method
* @brief Base class for atom-continuum coupling or transfer operators
*/
class ATC_Method {
public: /** methods */
/** constructor */
ATC_Method(string groupName, double **& perAtomArray, LAMMPS_NS::Fix * thisFix);
/** destructor */
virtual ~ATC_Method();
string version() {return "2.0";}
/** parser/modifier */
virtual bool modify(int narg, char **arg);
void parse_field(/*const*/ char ** args, int &argIndex,
FieldName &thisField, int &thisIndex);
/** initialize any computes that will be needed prior to the first timestep */
virtual void init_computes() {
lammpsInterface_->computes_addstep(lammpsInterface_->ntimestep());
};
/** pre integration run */
virtual void initialize();
/** Predictor phase, executed before Verlet */
virtual void pre_init_integrate() {
feEngine_->partition_mesh();
update_step();
};
/** Predictor phase, Verlet first step for velocity */
virtual void init_integrate_velocity(){};
/** Predictor phase, executed between velocity and position Verlet */
virtual void mid_init_integrate(){};
/** Predictor phase, Verlet first step for position */
virtual void init_integrate_position(){};
/** Predictor phase, executed after Verlet */
virtual void post_init_integrate(){};
/** Corrector phase, executed before Verlet */
virtual void pre_final_integrate(){};
/** Corrector phase, Verlet second step for velocity */
virtual void final_integrate(){};
/** Corrector phase, executed after Verlet*/
virtual void post_final_integrate();
/** post integration run : called at end of run or simulation */
virtual void finish();
/** pre/post atomic force calculation */
virtual void pre_force(){};
/** pre/post atomic force calculation in minimize */
virtual void min_pre_force(){};
virtual void min_post_force();
/** called at end of step for run or minimize */
virtual void end_of_step();
//---------------------------------------------------------------
/** \name memory management and processor information exchange */
//---------------------------------------------------------------
/*@{*/
/** pre_exchange is our indicator that atoms have moved across processors */
virtual void pre_exchange();
void setup_pre_exchange();
virtual void pre_neighbor();
virtual void post_force();
virtual int memory_usage();
virtual void grow_arrays(int);
void copy_arrays(int, int);
int pack_exchange(int, double *);
int unpack_exchange(int, double *);
int comm_forward(void) {return sizeComm_;}
int pack_comm(int , int *, double *, int, int *);
void unpack_comm(int, int, double *);
/*@}*/
//---------------------------------------------------------------
/** \name managers */
//---------------------------------------------------------------
/*@{*/
/** access to FE engine */
const FE_Engine * fe_engine() const {return feEngine_;};
/** access to interscale manager */
InterscaleManager & interscale_manager() {return interscaleManager_;};
/** access to lammps interface */
LammpsInterface const * lammps_interface() const {return lammpsInterface_;};
/** access to time filter */
TimeFilterManager * time_filter_manager() {return &timeFilterManager_;};
/*@}*/
//---------------------------------------------------------------
/** \name access methods for output computation data */
//---------------------------------------------------------------
/*@{*/
/** compute scalar for output */
virtual double compute_scalar() {return 0.;}
/** compute vector for output */
virtual double compute_vector(int n) {return 0.;}
/** compute vector for output */
virtual double compute_array(int irow, int icol) {return 0.;};
int scalar_flag() const {return scalarFlag_;}
int vector_flag() const {return vectorFlag_;}
int size_vector() const {return sizeVector_;}
int peratom_flag() const {return sizePerAtomCols_ > 0;}
int size_peratom_cols() const {return sizePerAtomCols_;}
int peratom_freq() const {return 1;}
void set_peratom_pointer(double ** & ptr) { ptr = perAtomOutput_; }
int global_freq() const {return scalarVectorFreq_;};
int extscalar() const {return extScalar_;};
int extvector() const {return extVector_;};
int * extlist() {return extList_;};
int thermo_energy_flag() const {return thermoEnergyFlag_;};
bool parallel_consistency() const {return parallelConsistency_;};
/** access to step number */
int step() const {return stepCounter_;};
double time() const {return simTime_;};
double dt() const {return lammpsInterface_->dt();}
/** time/step functions */
bool sample_now(void) const
{
int s = step();
bool now = ( (sampleFrequency_ > 0) && (s % sampleFrequency_ == 0));
return now;
}
bool output_now(void) const
{
int s = step();
bool now = ( (outputFrequency_ > 0) && (s == 1 || s % outputFrequency_ == 0) );
now = now || outputNow_;
return now;
}
double output_index(void) const
{
if (outputTime_) return time();
else return step();
}
/** print tracked types and groups */
int print_tracked() const
{
string msg = "species:\n";
for(unsigned int i = 0; i < typeList_.size(); i++) {
msg+=" type:"+to_string(typeList_[i])+" name: "+ typeNames_[i]+"\n"; }
for(unsigned int i = 0; i < groupList_.size(); i++) {
msg+=" group (bit):"+to_string(groupList_[i])+" name: "+ groupNames_[i]+"\n";
}
ATC::LammpsInterface::instance()->print_msg_once(msg);
return typeList_.size()+groupList_.size();
}
vector<string> tracked_names() const
{
vector<string> names(typeList_.size()+groupList_.size());
int j = 0;
for(unsigned int i = 0; i < typeList_.size(); i++) {
names[j++] = typeNames_[i];
}
for(unsigned int i = 0; i < groupList_.size(); i++) {
names[j++] = groupNames_[i];
}
return names;
}
int tag_to_type(string tag) const {
for(unsigned int i = 0; i < typeList_.size(); i++) {
if (tag == typeNames_[i]) return typeList_[i];
}
return -1;
}
int type_index(int t) const {
for(unsigned int i = 0; i < typeList_.size(); i++) {
if (t == typeList_[i]) return i;
}
return -1;
}
/*@}*/
//---------------------------------------------------------------
/** \name Access methods for sizes */
//---------------------------------------------------------------
/*@{*/
/** get number of unique FE nodes */
int num_nodes() const {return nNodes_;};
/** get number of spatial dimensions */
int nsd() const {return nsd_;};
/** get number of ATC internal atoms on this processor */
int nlocal() const {return nLocal_;};
/** get total number of LAMMPS atoms on this processor */
int nlocal_total() const {return nLocalTotal_;};
/** get number of ATC ghost atoms on this processor */
int nlocal_ghost() const {return nLocalGhost_;};
/** get the number of all LAMMPS real and parallel ghost atoms on this processor */
int nproc_ghost() const {return nLocalTotal_ + lammpsInterface_->nghost();};
/** get number of ATC internal atoms */
int ninternal() const {return nInternal_;}
/** get number of ATC ghost atoms */
int nghost() const {return nGhost_;};
/** match group bits */
bool is_ghost_group(int grpbit) { return (grpbit == groupbitGhost_); }
bool is_internal_group(int grpbit) { return (grpbit == groupbit_); }
unsigned int ntracked() { return typeList_.size()+groupList_.size(); }
bool has_tracked_species() { return typeList_.size()+groupList_.size() > 0; }
/*@}*/
virtual void initialize_mesh_data(void){meshDataInitialized_=true;}
//---------------------------------------------------------------
/** \name Access methods for data used by various methods */
//---------------------------------------------------------------
/*@{*/
/** access to name FE fields */
DENS_MAN &field(FieldName thisField){return fields_[thisField];};
/** access to FE field time derivatives */
DENS_MAT &get_dot_field(FieldName thisField){return dot_fields_[thisField].set_quantity();};
DENS_MAN &dot_field(FieldName thisField){return dot_fields_[thisField];};
/** access to nodal fields of atomic variables */
DENS_MAT &get_atomic_field(FieldName thisField)
{ return nodalAtomicFields_[thisField].set_quantity(); };
DENS_MAN &nodal_atomic_field(FieldName thisField)
{ return nodalAtomicFields_[thisField]; };
/** access to all fields */
FIELDS &fields() {return fields_;};
/** access to all fields rates of change (roc) */
FIELDS &fields_roc() {return dot_fields_;};
/** add a new field */
void add_fields(map<FieldName,int> & newFieldSizes);
/** access FE rate of change */
DENS_MAT &get_field_roc(FieldName thisField)
{ return dot_fields_[thisField].set_quantity(); };
DENS_MAN &field_roc(FieldName thisField)
{ return dot_fields_[thisField]; };
/** access atomic rate of change contributions to finite element equation */
DENS_MAT &get_nodal_atomic_field_roc(FieldName thisField)
{ return nodalAtomicFieldsRoc_[thisField].set_quantity(); };
DENS_MAN &nodal_atomic_field_roc(FieldName thisField)
{ return nodalAtomicFieldsRoc_[thisField]; };
/** access to second time derivative (2roc) */
DENS_MAT &get_field_2roc(FieldName thisField)
{ return ddot_fields_[thisField].set_quantity(); };
DENS_MAN &field_2roc(FieldName thisField)
{ return ddot_fields_[thisField]; };
/** access to third time derivative (3roc) */
DENS_MAT &get_field_3roc(FieldName thisField)
{ return dddot_fields_[thisField].set_quantity(); };
DENS_MAN &field_3roc(FieldName thisField)
{ return dddot_fields_[thisField]; };
/** group bit */
int groupbit() {return groupbit_;};
/** group bit for ghosts */
int groupbit_ghost() {return groupbitGhost_;};
/** internal atom to global map */
const Array<int> &internal_to_atom_map() {return internalToAtom_;};
/** ghost atom to global map */
const Array<int> &ghost_to_atom_map() {return ghostToAtom_;};
const map<int,int> & atom_to_internal_map() {return atomToInternal_;};
/** access to xref */
double ** xref() {return xref_;};
/** access to faceset names */
const set<PAIR> &faceset(const string & name) const {return (feEngine_->fe_mesh())->faceset(name);};
DENS_VEC copy_nodal_coordinates(int i) const { return feEngine_->fe_mesh()->nodal_coordinates(i); }
/** access to set of DENS_MANs accessed by tagging */
DENS_MAN & tagged_dens_man(const string & tag) {return taggedDensMan_[tag];};
/** access to atom to element type map */
AtomToElementMapType atom_to_element_map_type() {return atomToElementMapType_;};
/** access to atom to element update frequency */
int atom_to_element_map_frequency() {return atomToElementMapFrequency_;};
/** flag on whether atc is initialized */
bool is_initialized() const {return initialized_;};
/** step number within a run or minimize */
int local_step() const {return localStep_;};
/** flags whether a methods reset is required */
virtual bool reset_methods() const {return (!initialized_) || timeFilterManager_.need_reset() || timeFilterManager_.end_equilibrate();};
/** sizes of each field being considered */
const map<FieldName,int> & field_sizes() {return fieldSizes_;};
/*@}*/
/** compute the consistent MD mass matrix */
void compute_consistent_md_mass_matrix(const SPAR_MAT & shapeFunctionMatrix,
SPAR_MAT & mdMassMatrix) const;
/** access to species ids */
const map<string,pair<IdType,int> > & species_ids() const {return speciesIds_;};
/** access to molecule ids */
const map<string,pair<MolSize,int> > & molecule_ids() const {return moleculeIds_;};
//----------------------------------------------------------------
/** \name mass matrix operations */
//----------------------------------------------------------------
// inverted using GMRES
void apply_inverse_mass_matrix(MATRIX & data, FieldName thisField)
{
if (useConsistentMassMatrix_(thisField)) {
//data = consistentMassInverse_*data;
data = (consistentMassMatsInv_[thisField].quantity())*data;
return;
}
data = (massMatsInv_[thisField].quantity())*data;
};
/** multiply inverse mass matrix times given data and return result */
void apply_inverse_mass_matrix(const MATRIX & data_in, MATRIX & data_out,
FieldName thisField)
{
if (useConsistentMassMatrix_(thisField)) {
//data_out = consistentMassInverse_*data_in;
data_out = (consistentMassMatsInv_[thisField].quantity())*data_in;
return;
}
data_out = (massMatsInv_[thisField].quantity())*data_in;
};
void apply_inverse_md_mass_matrix(const MATRIX & data_in, MATRIX & data_out,
FieldName thisField)
{ data_out = (massMatsMdInv_[thisField].quantity())*data_in; };
DIAG_MAN &mass_mat(FieldName thisField)
{ return massMats_[thisField];};
//---------------------------------------------------------------
/** \name mass matrices */
//---------------------------------------------------------------
/*@{*/
/** access to mass matrices */
/** access to inverse mass matrices */
DIAG_MAT &get_mass_mat_inv(FieldName thisField)
{ return massMatsInv_[thisField].set_quantity();};
DIAG_MAN &mass_mat_inv(FieldName thisField)
{ return massMatsInv_[thisField];};
/** nodal volumes associated with the atoms, used for the atomic mass matrix */
AdmtfShapeFunctionRestriction * nodalAtomicVolume_;
void register_mass_matrix_dependency(DependencyManager * dependent,
FieldName thisField)
{
if (useConsistentMassMatrix_(thisField)) {
consistentMassMatsInv_[thisField].register_dependence(dependent);
return;
}
massMatsInv_[thisField].register_dependence(dependent);
};
void apply_inverse_md_mass_matrix(MATRIX & data, FieldName thisField)
{ data = (massMatsMdInv_[thisField].quantity())*data; };
void register_md_mass_matrix_dependency(DependencyManager * dependent,
FieldName thisField)
{massMatsMdInv_[thisField].register_dependence(dependent);}
// /** determine weighting method for atomic integration */
// void compute_consistent_md_mass_matrix(const SPAR_MAT & shapeFunctionMatrix,
// SPAR_MAT & mdMassMatrix);
virtual void compute_md_mass_matrix(FieldName thisField,
DIAG_MAT & massMat) {};
/** access to md mass matrices */
DIAG_MAN &mass_mat_md_inv(FieldName thisField)
{ return massMatsMdInv_[thisField];};
DIAG_MAN &set_mass_mat_md(FieldName thisField)
{ return massMatsMd_[thisField]; };
const DIAG_MAN &mass_mat_md(FieldName thisField) const
{
MASS_MATS::const_iterator man = massMatsMd_.find(thisField);
if (man == massMatsMd_.end() ) {
string msg = " MD mass for " + field_to_string(thisField) + " does not exist";
throw ATC_Error(msg);
}
return man->second;
};
/*@}*/
//----------------------------------------------------------------
/** \name Interscale operators */
//----------------------------------------------------------------
bool use_md_mass_normalization() const { return mdMassNormalization_;}
bool kernel_based() { return kernelBased_; }
bool kernel_on_the_fly() const { return kernelOnTheFly_;}
bool has_kernel_function() { return kernelFunction_ != NULL; }
KernelFunction * kernel_function() { return kernelFunction_; }
vector<int> & type_list() { return typeList_; }
vector<int> & group_list() { return groupList_; }
SPAR_MAN* interpolant() { return shpFcn_; }
SPAR_MAN* accumulant() { return accumulant_; }
DIAG_MAN* accumulant_weights() { return accumulantWeights_;}
DIAG_MAN* accumulant_inverse_volumes() { return accumulantInverseVolumes_; }
PerAtomQuantity<double> * atom_coarsegraining_positions() { return atomCoarseGrainingPositions_; }
PerAtomQuantity<double> * atom_reference_positions() { return atomReferencePositions_; }
PerAtomQuantity<int> * atom_to_element_map() { return atomElement_;}
double ke_scale() { return keScale_; }
double pe_scale() { return peScale_; }
/** from a atom group, find the nodes that have non-zero shape function contributions */
bool nodal_influence(const int groupbit, set<int>& nset, set<int>& aset, double tol =1.e-8);
int nodal_influence(const int groupbit, set<int>& nset, set<int>& aset,
bool ghost,
double tol =1.e-8);
/*@{*/
/** Restrict based on atomic volume integration for volumetric quantities : given w_\alpha, w_I = \sum_\alpha N_{I\alpha} w_\alpha */
void restrict_volumetric_quantity(const MATRIX &atomData,
MATRIX &nodeData);
void restrict_volumetric_quantity(const MATRIX &atomData,
MATRIX &nodeData,
const SPAR_MAT & shpFcn);
/** Prolong : given w_I, w_\alpha = \sum_I N_{I\alpha} w_I */
void prolong(const MATRIX &nodeData, MATRIX &atomData);
//---------------------------------------------------------------
/** \name quadrature weights */
//---------------------------------------------------------------
PerAtomDiagonalMatrix<double> * create_atom_volume();
//---------------------------------------------------------------
/** \name access to potential energy reference */
//---------------------------------------------------------------
/*@{*/
bool has_ref_pe(void) const { return hasRefPE_; }
const DENS_MAT * nodal_ref_potential_energy(void) { return &nodalRefPotentialEnergy_; }
protected: /** methods */
/** time functions */
void set_time(double t=0) {simTime_=t;};
void update_time(double alpha = 1.0)
{
double dt = lammpsInterface_->dt();
simTime_ += alpha*dt;
if (dt == 0.0) simTime_ = stepCounter_;
}
// note step counter different than lammps step e.g. min
void update_step(void) { ++stepCounter_; }
//---------------------------------------------------------------
/** initialization routines */
//---------------------------------------------------------------
/** gets baseline data from continuum model */
virtual void set_continuum_data();
/** sets up all data necessary to define the computational geometry */
virtual void set_computational_geometry();
/** constructs all data which is updated with time integration, i.e. fields */
virtual void construct_time_integration_data() = 0;
/** create methods, e.g. time integrators, filters */
virtual void construct_methods() = 0;
/** set up data which is dependency managed */
virtual void construct_transfers();
/** update the peratom output pointers */
void update_peratom_output(void);
virtual void read_restart_data(string fileName_, RESTART_LIST & data);
virtual void write_restart_data(string fileName_, RESTART_LIST & data);
void pack_fields(RESTART_LIST & data);
/** mass matrices */
MASS_MATS massMats_;
MASS_MATS massMatsInv_;
MASS_MATS massMatsMd_;
MASS_MATS massMatsMdInstantaneous_;
MASS_MATS massMatsMdInv_;
MASS_MATS massMatsFE_;
MASS_MATS massMatsAq_;
MASS_MATS massMatsAqInstantaneous_;
Array<bool> useConsistentMassMatrix_;
map<FieldName,SPAR_MAN> consistentMassMats_;
map<FieldName,DENS_MAN> consistentMassMatsInv_;
map<FieldName,TimeFilter * > massMatTimeFilters_;
//---------------------------------------------------------------
/** \name quadrature weight function */
//---------------------------------------------------------------
/*@{*/
void write_atomic_weights(const string filename,const DIAG_MAT & atomicVolumeMatrix);
/** resets shape function matrices based on atoms on this processor */
virtual void reset_nlocal();
virtual void reset_coordinates();
/*@}*/
/** re-read reference positions */
bool read_atomic_ref_positions(const char * filename);
void remap_ghost_ref_positions(void);
void adjust_xref_pbc();
//---------------------------------------------------------------
/** \name output functions */
//---------------------------------------------------------------
/*@{*/
virtual void output();
void compute_nodeset_output(void);
void compute_faceset_output(void);
void compute_elementset_output(void);
/*@}*/
//---------------------------------------------------------------
/** \name types, groups, and molecules */
//---------------------------------------------------------------
/*@{*/
/** map from species string tag to LAMMPS type id or group bit */
map<string,pair<IdType,int> > speciesIds_; // OBSOLETE
map<string,pair<MolSize,int> > moleculeIds_;
/** a list of lammps types & groups ATC tracks */
vector<string> typeNames_;
vector<string> groupNames_;
vector<int> typeList_;
vector<int> groupList_;
/*@}*/
void reset_fields();
private: /** methods */
ATC_Method(); // do not define
protected: /** data */
/* parsed input requires changes */
bool needReset_;
// managers
/** pointer to lammps interface class */
LammpsInterface * lammpsInterface_;
/** manager for atomic quantities and interscale operations */
InterscaleManager interscaleManager_;
TimeFilterManager timeFilterManager_;
/** finite element handler */
FE_Engine * feEngine_;
// status flags
/** flag on if initialization has been performed */
bool initialized_;
bool meshDataInitialized_;
/** counter for steps of a run or minimize */
int localStep_;
// sizes
/** size of per atom communication */
int sizeComm_;
/** atomic coordinates for coarse graining */
PerAtomQuantity<double> * atomCoarseGrainingPositions_;
PerAtomQuantity<double> * atomGhostCoarseGrainingPositions_;
PerAtomQuantity<double> * atomProcGhostCoarseGrainingPositions_;
PerAtomQuantity<double> * atomReferencePositions_;
/** number of unique FE nodes */
int nNodes_;
/** Number of Spatial Dimensions */
int nsd_;
#ifdef EXTENDED_ERROR_CHECKING
/** data for handling atoms crossing processors */
bool atomSwitch_;
#endif
/** reference position of the atoms */
double ** xref_;
bool readXref_;
bool needXrefProcessorGhosts_;
string xRefFile_;
/** flag for tracking displacements or not, depending on physics */
bool trackDisplacement_;
/** map from reference positions to element id, pointer is to internal only */
bool needsAtomToElementMap_;
PerAtomQuantity<int> * atomElement_;
PerAtomQuantity<int> * atomGhostElement_;
/** atomic ATC material tag */
double Xprd_,Yprd_,Zprd_; // lengths of periodic box in reference frame
double XY_,YZ_,XZ_;
double boxXlo_,boxXhi_; // lo/hi bounds of periodic box in reference frame
double boxYlo_,boxYhi_; // lo/hi bounds of periodic box in reference frame
double boxZlo_,boxZhi_; // lo/hi bounds of periodic box in reference frame
// next data members are for consistency with existing ATC_Transfer, but are redundant and do not
// conform to naming standards, and should be accessible through the mesh
/** periodicity flags and lengths */
int periodicity[3];
double box_bounds[2][3];
double box_length[3];
/** pointers to needed atom quantities and transfers */
FundamentalAtomQuantity * atomMasses_;
FundamentalAtomQuantity * atomPositions_;
FundamentalAtomQuantity * atomVelocities_;
FundamentalAtomQuantity * atomForces_;
//---------------------------------------------------------------
/** \name output data */
//---------------------------------------------------------------
/*@{*/
//private:
bool parallelConsistency_;
/** base name for output files */
string outputPrefix_;
/** output flag */
bool outputNow_;
/** output time or step (for lammps compatibility) */
bool outputTime_;
/** output frequency */
int outputFrequency_;
/** sample frequency */
int sampleFrequency_;
/** sample counter */
int sampleCounter_;
TAG_FIELDS filteredData_;
double peScale_,keScale_;
//protected:
/*@}*/
//---------------------------------------------------------------
/** \name member data related to compute_scalar() and compute_vector() */
//---------------------------------------------------------------
/*@{*/
int scalarFlag_; // 0/1 if compute_scalar() function exists
int vectorFlag_; // 0/1 if compute_vector() function exists
int sizeVector_; // N = size of global vector
int scalarVectorFreq_; // frequency compute s/v data is available at
int sizePerAtomCols_; // N = size of per atom vector to dump
double **perAtomOutput_; // per atom data
double **&perAtomArray_; // per atom data
int extScalar_; // 0/1 if scalar is intensive/extensive
int extVector_; // 0/1/-1 if vector is all int/ext/extlist
int *extList_; // list of 0/1 int/ext for each vec component
int thermoEnergyFlag_; // 0/1 if fix adds to overall energy
/*@}*/
//---------------------------------------------------------------
/** \name fields and necessary data for FEM */
//---------------------------------------------------------------
/*@{*/
map<FieldName,int> fieldSizes_;
FIELDS fields_;
/*@}*/
//---------------------------------------------------------------
/** \name time integration and filtering fields */
//---------------------------------------------------------------
/*@{*/
FIELDS dot_fields_;
FIELDS ddot_fields_;
FIELDS dddot_fields_;
/** Restricted Fields */
FIELDS nodalAtomicFields_; // replaces fieldNdFiltered_
FIELDS nodalAtomicFieldsRoc_;
/*@}*/
//---------------------------------------------------------------
/** \name quadrature weights */
//---------------------------------------------------------------
/*@{*/
DIAG_MAT NodeVolumes_;
DIAG_MAN invNodeVolumes_;
/** atomic quadrature integration weights (V_\alpha) */
ProtectedAtomDiagonalMatrix<double> * atomVolume_;
string atomicWeightsFile_;
bool atomicWeightsWriteFlag_;
int atomicWeightsWriteFrequency_;
double atomicVolume_; // global atomic volume for homogeneous set of atoms
map<int,double> Valpha_;
AtomicWeightType atomWeightType_;
/*@}*/
//---------------------------------------------------------------
/** \name domain decomposition */
//---------------------------------------------------------------
/*@{*/
DomainDecompositionType domainDecomposition_;
/*@}*/
//---------------------------------------------------------------
/** \name atom data */
//---------------------------------------------------------------
/*@{*/
/** bitwise comparisons for boundary (ghost) atoms */
int groupbit_;
int groupbitGhost_;
bool needProcGhost_;
string groupTag_;
string groupTagGhost_;
/** number of atoms of correct type,
ghosts are atoms outside our domain of interest
boundary are atoms contributing to boundary flux terms */
/** Number of "internal" atoms on this processor */
int nLocal_;
/** Number of atoms on this processor */
int nLocalTotal_;
int nLocalGhost_;
int nInternal_;
int nGhost_;
Array<int> internalToAtom_;
std::map<int,int> atomToInternal_;
Array<int> ghostToAtom_;
/*@}*/
//----------------------------------------------------------------
/** \name maps and masks */
//----------------------------------------------------------------
/*@{*/
AtomToElementMapType atomToElementMapType_;
int atomToElementMapFrequency_;
int regionID_;
/*@}*/
//----------------------------------------------------------------
/** \name shape function matrices */
//----------------------------------------------------------------
/*@{*/
// sparse matrix where columns correspond to global node numbering
SPAR_MAN * shpFcn_;
VectorDependencyManager<SPAR_MAT * > * shpFcnDerivs_;
SPAR_MAN * shpFcnGhost_;
VectorDependencyManager<SPAR_MAT * > * shpFcnDerivsGhost_;
/** map from species string tag to the species density */
map<string,DENS_MAN> taggedDensMan_;
/** weighted shape function matrices at overlap nodes
for use with thermostats */
SPAR_MAN NhatOverlap_;
/*@}*/
//----------------------------------------------------------------
/** \name accumulant matrices */
//----------------------------------------------------------------
/*@{*/
/** compute kernel shape functions on-the-fly w/o storing N_Ia */
bool mdMassNormalization_;
bool kernelBased_;
bool kernelOnTheFly_;
class KernelFunction * kernelFunction_;
bool bondOnTheFly_;
SPAR_MAN* accumulant_;
SPAR_MAN* accumulantMol_; // KKM add
SPAR_MAN* accumulantMolGrad_; // KKM add
SPAR_MAN kernelAccumulantMol_; // KKM add
SPAR_MAN kernelAccumulantMolGrad_; // KKM add
DIAG_MAN* accumulantWeights_;
DIAG_MAN* accumulantInverseVolumes_;
/*@}*/
//---------------------------------------------------------------
/** \name restart procedures */
//---------------------------------------------------------------
bool useRestart_;
string restartFileName_;
//---------------------------------------------------------------
/** \name data specific to node/faceset for global output */
//---------------------------------------------------------------
/** group computes : type, group_id -> value */
map< pair < string, FieldName > , NodesetOperationType> nsetData_;
map < pair<string,string>, FacesetIntegralType > fsetData_;
map < pair<string, FieldName>,ElementsetOperationType > esetData_;
//---------------------------------------------------------------
/** \name reference data */
//---------------------------------------------------------------
bool hasRefPE_;
bool setRefPE_;
bool setRefPEvalue_;
double refPEvalue_;
bool readRefPE_;
string nodalRefPEfile_;
DENS_MAT nodalRefPotentialEnergy_;
void set_reference_potential_energy(void);
private: /** data */
/** current time in simulation */
double simTime_;
/** step counter */
int stepCounter_;
};
};
#endif

Event Timeline