Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91989266
lal_re_squared_ext.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 10:19
Size
5 KB
Mime Type
text/x-c
Expires
Mon, Nov 18, 10:19 (2 d)
Engine
blob
Format
Raw Data
Handle
22338306
Attached To
rLAMMPS lammps
lal_re_squared_ext.cpp
View Options
/***************************************************************************
re_squared_ext.cpp
-------------------
W. Michael Brown
LAMMPS Wrappers for RE-Squared Acceleration
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : brownw@ornl.gov
***************************************************************************/
#include <iostream>
#include <cassert>
#include <math.h>
#include "lal_re_squared.h"
using namespace std;
using namespace LAMMPS_AL;
static RESquared<PRECISION,ACC_PRECISION> REMF;
// ---------------------------------------------------------------------------
// Allocate memory on host and device and copy constants to device
// ---------------------------------------------------------------------------
int re_gpu_init(const int ntypes, double **shape, double **well, double **cutsq,
double **sigma, double **epsilon,
int **form, double **host_lj1, double **host_lj2,
double **host_lj3, double **host_lj4, double **offset,
double *special_lj, const int inum, const int nall,
const int max_nbors, const int maxspecial,
const double cell_size, int &gpu_mode, FILE *screen) {
REMF.clear();
gpu_mode=REMF.device->gpu_mode();
double gpu_split=REMF.device->particle_split();
int first_gpu=REMF.device->first_device();
int last_gpu=REMF.device->last_device();
int world_me=REMF.device->world_me();
int gpu_rank=REMF.device->gpu_rank();
int procs_per_gpu=REMF.device->procs_per_gpu();
REMF.device->init_message(screen,"resquared",first_gpu,last_gpu);
bool message=false;
if (REMF.device->replica_me()==0 && screen)
message=true;
if (message) {
fprintf(screen,"Initializing GPU and compiling on process 0...");
fflush(screen);
}
int init_ok=0;
if (world_me==0)
init_ok=REMF.init(ntypes, shape, well, cutsq, sigma, epsilon,
form, host_lj1, host_lj2, host_lj3, host_lj4, offset,
special_lj, inum, nall, max_nbors, maxspecial, cell_size,
gpu_split, screen);
REMF.device->world_barrier();
if (message)
fprintf(screen,"Done.\n");
for (int i=0; i<procs_per_gpu; i++) {
if (message) {
if (last_gpu-first_gpu==0)
fprintf(screen,"Initializing GPU %d on core %d...",first_gpu,i);
else
fprintf(screen,"Initializing GPUs %d-%d on core %d...",first_gpu,
last_gpu,i);
fflush(screen);
}
if (gpu_rank==i && world_me!=0)
init_ok=REMF.init(ntypes, shape, well, cutsq, sigma, epsilon,
form, host_lj1, host_lj2, host_lj3,
host_lj4, offset, special_lj, inum, nall,
max_nbors, maxspecial, cell_size, gpu_split, screen);
REMF.device->gpu_barrier();
if (message)
fprintf(screen,"Done.\n");
}
if (message)
fprintf(screen,"\n");
if (init_ok==0)
REMF.estimate_gpu_overhead();
return init_ok;
}
// ---------------------------------------------------------------------------
// Clear memory on host and device
// ---------------------------------------------------------------------------
void re_gpu_clear() {
REMF.clear();
}
int** compute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, double *sublo,
double *subhi, int *tag, int **nspecial,
int **special, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
int **ilist, int **numj, const double cpu_time, bool &success,
double **host_quat);
int** re_gpu_compute_n(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, double *sublo,
double *subhi, int *tag, int **nspecial, int **special,
const bool eflag, const bool vflag, const bool eatom,
const bool vatom, int &host_start, int **ilist,
int **jnum, const double cpu_time, bool &success,
double **host_quat) {
return REMF.compute(ago, inum_full, nall, host_x, host_type, sublo, subhi,
tag, nspecial, special, eflag, vflag, eatom, vatom,
host_start, ilist, jnum, cpu_time, success, host_quat);
}
int * re_gpu_compute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, int *ilist, int *numj,
int **firstneigh, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
const double cpu_time, bool &success, double **host_quat) {
return REMF.compute(ago, inum_full, nall, host_x, host_type, ilist,
numj, firstneigh, eflag, vflag, eatom, vatom, host_start,
cpu_time, success, host_quat);
}
// ---------------------------------------------------------------------------
// Return memory usage
// ---------------------------------------------------------------------------
double re_gpu_bytes() {
return REMF.host_memory_usage();
}
Event Timeline
Log In to Comment