Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92372182
dgebd2.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 19, 18:58
Size
9 KB
Mime Type
text/html
Expires
Thu, Nov 21, 18:58 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22432690
Attached To
rLAMMPS lammps
dgebd2.f
View Options
*>
\
brief
\
b
DGEBD2
reduces
a
general
matrix
to
bidiagonal
form
using
an
unblocked
algorithm
.
*
*
===========
DOCUMENTATION
===========
*
*
Online
html
documentation
available
at
*
http
:
//
www
.
netlib
.
org
/
lapack
/
explore
-
html
/
*
*>
\
htmlonly
*>
Download
DGEBD2
+
dependencies
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebd2.f"
>
*>
[
TGZ
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebd2.f"
>
*>
[
ZIP
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebd2.f"
>
*>
[
TXT
]
</
a
>
*>
\
endhtmlonly
*
*
Definition
:
*
===========
*
*
SUBROUTINE
DGEBD2
(
M
,
N
,
A
,
LDA
,
D
,
E
,
TAUQ
,
TAUP
,
WORK
,
INFO
)
*
*
..
Scalar
Arguments
..
*
INTEGER
INFO
,
LDA
,
M
,
N
*
..
*
..
Array
Arguments
..
*
DOUBLE PRECISION
A
(
LDA
,
*
),
D
(
*
),
E
(
*
),
TAUP
(
*
),
*
$
TAUQ
(
*
),
WORK
(
*
)
*
..
*
*
*>
\
par
Purpose
:
*
=============
*>
*>
\
verbatim
*>
*>
DGEBD2
reduces
a
real
general
m
by
n
matrix
A
to
upper
or
lower
*>
bidiagonal
form
B
by
an
orthogonal
transformation
:
Q
**
T
*
A
*
P
=
B
.
*>
*>
If
m
>=
n
,
B
is
upper
bidiagonal
;
if
m
<
n
,
B
is
lower
bidiagonal
.
*>
\
endverbatim
*
*
Arguments
:
*
==========
*
*>
\
param
[
in
]
M
*>
\
verbatim
*>
M
is
INTEGER
*>
The
number
of
rows
in
the
matrix
A
.
M
>=
0.
*>
\
endverbatim
*>
*>
\
param
[
in
]
N
*>
\
verbatim
*>
N
is
INTEGER
*>
The
number
of
columns
in
the
matrix
A
.
N
>=
0.
*>
\
endverbatim
*>
*>
\
param
[
in
,
out
]
A
*>
\
verbatim
*>
A
is
DOUBLE PRECISION
array
,
dimension
(
LDA
,
N
)
*>
On
entry
,
the
m
by
n
general
matrix
to
be
reduced
.
*>
On
exit
,
*>
if
m
>=
n
,
the
diagonal
and
the
first
superdiagonal
are
*>
overwritten
with
the
upper
bidiagonal
matrix
B
;
the
*>
elements
below
the
diagonal
,
with
the
array
TAUQ
,
represent
*>
the
orthogonal
matrix
Q
as
a
product
of
elementary
*>
reflectors
,
and
the
elements
above
the
first
superdiagonal
,
*>
with
the
array
TAUP
,
represent
the
orthogonal
matrix
P
as
*>
a
product
of
elementary
reflectors
;
*>
if
m
<
n
,
the
diagonal
and
the
first
subdiagonal
are
*>
overwritten
with
the
lower
bidiagonal
matrix
B
;
the
*>
elements
below
the
first
subdiagonal
,
with
the
array
TAUQ
,
*>
represent
the
orthogonal
matrix
Q
as
a
product
of
*>
elementary
reflectors
,
and
the
elements
above
the
diagonal
,
*>
with
the
array
TAUP
,
represent
the
orthogonal
matrix
P
as
*>
a
product
of
elementary
reflectors
.
*>
See
Further
Details
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
LDA
*>
\
verbatim
*>
LDA
is
INTEGER
*>
The
leading
dimension
of
the
array
A
.
LDA
>=
max
(
1
,
M
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
D
*>
\
verbatim
*>
D
is
DOUBLE PRECISION
array
,
dimension
(
min
(
M
,
N
))
*>
The
diagonal
elements
of
the
bidiagonal
matrix
B
:
*>
D
(
i
)
=
A
(
i
,
i
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
E
*>
\
verbatim
*>
E
is
DOUBLE PRECISION
array
,
dimension
(
min
(
M
,
N
)
-
1
)
*>
The
off
-
diagonal
elements
of
the
bidiagonal
matrix
B
:
*>
if
m
>=
n
,
E
(
i
)
=
A
(
i
,
i
+
1
)
for
i
=
1
,
2
,
...
,
n
-
1
;
*>
if
m
<
n
,
E
(
i
)
=
A
(
i
+
1
,
i
)
for
i
=
1
,
2
,
...
,
m
-
1.
*>
\
endverbatim
*>
*>
\
param
[
out
]
TAUQ
*>
\
verbatim
*>
TAUQ
is
DOUBLE PRECISION
array dimension
(
min
(
M
,
N
))
*>
The
scalar
factors
of
the
elementary
reflectors
which
*>
represent
the
orthogonal
matrix
Q
.
See
Further
Details
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
TAUP
*>
\
verbatim
*>
TAUP
is
DOUBLE PRECISION
array
,
dimension
(
min
(
M
,
N
))
*>
The
scalar
factors
of
the
elementary
reflectors
which
*>
represent
the
orthogonal
matrix
P
.
See
Further
Details
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
WORK
*>
\
verbatim
*>
WORK
is
DOUBLE PRECISION
array
,
dimension
(
max
(
M
,
N
))
*>
\
endverbatim
*>
*>
\
param
[
out
]
INFO
*>
\
verbatim
*>
INFO
is
INTEGER
*>
=
0
:
successful
exit
.
*>
<
0
:
if
INFO
=
-
i
,
the
i
-
th
argument
had
an
illegal
value
.
*>
\
endverbatim
*
*
Authors
:
*
========
*
*>
\
author
Univ
.
of
Tennessee
*>
\
author
Univ
.
of
California
Berkeley
*>
\
author
Univ
.
of
Colorado
Denver
*>
\
author
NAG
Ltd
.
*
*>
\
date
September
2012
*
*>
\
ingroup
doubleGEcomputational
*
*>
\
par
Further
Details
:
*
=====================
*>
*>
\
verbatim
*>
*>
The
matrices
Q
and
P
are
represented
as
products
of
elementary
*>
reflectors
:
*>
*>
If
m
>=
n
,
*>
*>
Q
=
H
(
1
)
H
(
2
)
.
.
.
H
(
n
)
and
P
=
G
(
1
)
G
(
2
)
.
.
.
G
(
n
-
1
)
*>
*>
Each
H
(
i
)
and
G
(
i
)
has
the
form
:
*>
*>
H
(
i
)
=
I
-
tauq
*
v
*
v
**
T
and
G
(
i
)
=
I
-
taup
*
u
*
u
**
T
*>
*>
where
tauq
and
taup
are
real
scalars
,
and
v
and
u
are
real
vectors
;
*>
v
(
1
:
i
-
1
)
=
0
,
v
(
i
)
=
1
,
and
v
(
i
+
1
:
m
)
is
stored
on
exit
in
A
(
i
+
1
:
m
,
i
);
*>
u
(
1
:
i
)
=
0
,
u
(
i
+
1
)
=
1
,
and
u
(
i
+
2
:
n
)
is
stored
on
exit
in
A
(
i
,
i
+
2
:
n
);
*>
tauq
is
stored
in
TAUQ
(
i
)
and
taup
in
TAUP
(
i
)
.
*>
*>
If
m
<
n
,
*>
*>
Q
=
H
(
1
)
H
(
2
)
.
.
.
H
(
m
-
1
)
and
P
=
G
(
1
)
G
(
2
)
.
.
.
G
(
m
)
*>
*>
Each
H
(
i
)
and
G
(
i
)
has
the
form
:
*>
*>
H
(
i
)
=
I
-
tauq
*
v
*
v
**
T
and
G
(
i
)
=
I
-
taup
*
u
*
u
**
T
*>
*>
where
tauq
and
taup
are
real
scalars
,
and
v
and
u
are
real
vectors
;
*>
v
(
1
:
i
)
=
0
,
v
(
i
+
1
)
=
1
,
and
v
(
i
+
2
:
m
)
is
stored
on
exit
in
A
(
i
+
2
:
m
,
i
);
*>
u
(
1
:
i
-
1
)
=
0
,
u
(
i
)
=
1
,
and
u
(
i
+
1
:
n
)
is
stored
on
exit
in
A
(
i
,
i
+
1
:
n
);
*>
tauq
is
stored
in
TAUQ
(
i
)
and
taup
in
TAUP
(
i
)
.
*>
*>
The
contents
of
A
on
exit
are
illustrated
by
the
following
examples
:
*>
*>
m
=
6
and
n
=
5
(
m
>
n
):
m
=
5
and
n
=
6
(
m
<
n
):
*>
*>
(
d
e
u1
u1
u1
)
(
d
u1
u1
u1
u1
u1
)
*>
(
v1
d
e
u2
u2
)
(
e
d
u2
u2
u2
u2
)
*>
(
v1
v2
d
e
u3
)
(
v1
e
d
u3
u3
u3
)
*>
(
v1
v2
v3
d
e
)
(
v1
v2
e
d
u4
u4
)
*>
(
v1
v2
v3
v4
d
)
(
v1
v2
v3
e
d
u5
)
*>
(
v1
v2
v3
v4
v5
)
*>
*>
where
d
and
e
denote
diagonal
and
off
-
diagonal
elements
of
B
,
vi
*>
denotes
an
element
of
the
vector
defining
H
(
i
),
and
ui
an
element
of
*>
the
vector
defining
G
(
i
)
.
*>
\
endverbatim
*>
*
=====================================================================
SUBROUTINE
DGEBD2
(
M
,
N
,
A
,
LDA
,
D
,
E
,
TAUQ
,
TAUP
,
WORK
,
INFO
)
*
*
--
LAPACK
computational
routine
(
version
3.4.2
)
--
*
--
LAPACK
is
a
software
package
provided
by
Univ
.
of
Tennessee
,
--
*
--
Univ
.
of
California
Berkeley
,
Univ
.
of
Colorado
Denver
and
NAG
Ltd
..
--
*
September
2012
*
*
..
Scalar
Arguments
..
INTEGER
INFO
,
LDA
,
M
,
N
*
..
*
..
Array
Arguments
..
DOUBLE PRECISION
A
(
LDA
,
*
),
D
(
*
),
E
(
*
),
TAUP
(
*
),
$
TAUQ
(
*
),
WORK
(
*
)
*
..
*
*
=====================================================================
*
*
..
Parameters
..
DOUBLE PRECISION
ZERO
,
ONE
PARAMETER
(
ZERO
=
0.0
D
+
0
,
ONE
=
1.0
D
+
0
)
*
..
*
..
Local
Scalars
..
INTEGER
I
*
..
*
..
External
Subroutines
..
EXTERNAL
DLARF
,
DLARFG
,
XERBLA
*
..
*
..
Intrinsic
Functions
..
INTRINSIC
MAX
,
MIN
*
..
*
..
Executable
Statements
..
*
*
Test
the
input
parameters
*
INFO
=
0
IF
(
M
.LT.
0
)
THEN
INFO
=
-
1
ELSE IF
(
N
.LT.
0
)
THEN
INFO
=
-
2
ELSE IF
(
LDA
.LT.
MAX
(
1
,
M
)
)
THEN
INFO
=
-
4
END IF
IF
(
INFO
.LT.
0
)
THEN
CALL
XERBLA
(
'DGEBD2'
,
-
INFO
)
RETURN
END IF
*
IF
(
M
.GE.
N
)
THEN
*
*
Reduce
to
upper
bidiagonal
form
*
DO
10
I
=
1
,
N
*
*
Generate
elementary
reflector
H
(
i
)
to
annihilate
A
(
i
+
1
:
m
,
i
)
*
CALL
DLARFG
(
M
-
I
+
1
,
A
(
I
,
I
),
A
(
MIN
(
I
+
1
,
M
),
I
),
1
,
$
TAUQ
(
I
)
)
D
(
I
)
=
A
(
I
,
I
)
A
(
I
,
I
)
=
ONE
*
*
Apply
H
(
i
)
to
A
(
i
:
m
,
i
+
1
:
n
)
from
the
left
*
IF
(
I
.LT.
N
)
$
CALL
DLARF
(
'Left'
,
M
-
I
+
1
,
N
-
I
,
A
(
I
,
I
),
1
,
TAUQ
(
I
),
$
A
(
I
,
I
+
1
),
LDA
,
WORK
)
A
(
I
,
I
)
=
D
(
I
)
*
IF
(
I
.LT.
N
)
THEN
*
*
Generate
elementary
reflector
G
(
i
)
to
annihilate
*
A
(
i
,
i
+
2
:
n
)
*
CALL
DLARFG
(
N
-
I
,
A
(
I
,
I
+
1
),
A
(
I
,
MIN
(
I
+
2
,
N
)
),
$
LDA
,
TAUP
(
I
)
)
E
(
I
)
=
A
(
I
,
I
+
1
)
A
(
I
,
I
+
1
)
=
ONE
*
*
Apply
G
(
i
)
to
A
(
i
+
1
:
m
,
i
+
1
:
n
)
from
the
right
*
CALL
DLARF
(
'Right'
,
M
-
I
,
N
-
I
,
A
(
I
,
I
+
1
),
LDA
,
$
TAUP
(
I
),
A
(
I
+
1
,
I
+
1
),
LDA
,
WORK
)
A
(
I
,
I
+
1
)
=
E
(
I
)
ELSE
TAUP
(
I
)
=
ZERO
END IF
10
CONTINUE
ELSE
*
*
Reduce
to
lower
bidiagonal
form
*
DO
20
I
=
1
,
M
*
*
Generate
elementary
reflector
G
(
i
)
to
annihilate
A
(
i
,
i
+
1
:
n
)
*
CALL
DLARFG
(
N
-
I
+
1
,
A
(
I
,
I
),
A
(
I
,
MIN
(
I
+
1
,
N
)
),
LDA
,
$
TAUP
(
I
)
)
D
(
I
)
=
A
(
I
,
I
)
A
(
I
,
I
)
=
ONE
*
*
Apply
G
(
i
)
to
A
(
i
+
1
:
m
,
i
:
n
)
from
the
right
*
IF
(
I
.LT.
M
)
$
CALL
DLARF
(
'Right'
,
M
-
I
,
N
-
I
+
1
,
A
(
I
,
I
),
LDA
,
$
TAUP
(
I
),
A
(
I
+
1
,
I
),
LDA
,
WORK
)
A
(
I
,
I
)
=
D
(
I
)
*
IF
(
I
.LT.
M
)
THEN
*
*
Generate
elementary
reflector
H
(
i
)
to
annihilate
*
A
(
i
+
2
:
m
,
i
)
*
CALL
DLARFG
(
M
-
I
,
A
(
I
+
1
,
I
),
A
(
MIN
(
I
+
2
,
M
),
I
),
1
,
$
TAUQ
(
I
)
)
E
(
I
)
=
A
(
I
+
1
,
I
)
A
(
I
+
1
,
I
)
=
ONE
*
*
Apply
H
(
i
)
to
A
(
i
+
1
:
m
,
i
+
1
:
n
)
from
the
left
*
CALL
DLARF
(
'Left'
,
M
-
I
,
N
-
I
,
A
(
I
+
1
,
I
),
1
,
TAUQ
(
I
),
$
A
(
I
+
1
,
I
+
1
),
LDA
,
WORK
)
A
(
I
+
1
,
I
)
=
E
(
I
)
ELSE
TAUQ
(
I
)
=
ZERO
END IF
20
CONTINUE
END IF
RETURN
*
*
End
of
DGEBD2
*
END
Event Timeline
Log In to Comment