Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91483871
dlascl.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 11, 14:01
Size
9 KB
Mime Type
text/html
Expires
Wed, Nov 13, 14:01 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22199563
Attached To
rLAMMPS lammps
dlascl.f
View Options
*>
\
brief
\
b
DLASCL
multiplies
a
general
rectangular
matrix
by
a
real
scalar
defined
as
cto
/
cfrom
.
*
*
===========
DOCUMENTATION
===========
*
*
Online
html
documentation
available
at
*
http
:
//
www
.
netlib
.
org
/
lapack
/
explore
-
html
/
*
*>
\
htmlonly
*>
Download
DLASCL
+
dependencies
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlascl.f"
>
*>
[
TGZ
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlascl.f"
>
*>
[
ZIP
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlascl.f"
>
*>
[
TXT
]
</
a
>
*>
\
endhtmlonly
*
*
Definition
:
*
===========
*
*
SUBROUTINE
DLASCL
(
TYPE
,
KL
,
KU
,
CFROM
,
CTO
,
M
,
N
,
A
,
LDA
,
INFO
)
*
*
..
Scalar
Arguments
..
*
CHARACTER
TYPE
*
INTEGER
INFO
,
KL
,
KU
,
LDA
,
M
,
N
*
DOUBLE PRECISION
CFROM
,
CTO
*
..
*
..
Array
Arguments
..
*
DOUBLE PRECISION
A
(
LDA
,
*
)
*
..
*
*
*>
\
par
Purpose
:
*
=============
*>
*>
\
verbatim
*>
*>
DLASCL
multiplies
the
M
by
N
real
matrix
A
by
the
real
scalar
*>
CTO
/
CFROM
.
This
is
done
without
over
/
underflow
as
long
as
the
final
*>
result
CTO
*
A
(
I
,
J
)
/
CFROM
does
not
over
/
underflow
.
TYPE
specifies
that
*>
A
may
be
full
,
upper
triangular
,
lower
triangular
,
upper
Hessenberg
,
*>
or
banded
.
*>
\
endverbatim
*
*
Arguments
:
*
==========
*
*>
\
param
[
in
]
TYPE
*>
\
verbatim
*>
TYPE
is
CHARACTER
*
1
*>
TYPE
indices
the
storage
type
of
the
input
matrix
.
*>
=
'G'
:
A
is
a
full
matrix
.
*>
=
'L'
:
A
is
a
lower
triangular
matrix
.
*>
=
'U'
:
A
is
an
upper
triangular
matrix
.
*>
=
'H'
:
A
is
an
upper
Hessenberg
matrix
.
*>
=
'B'
:
A
is
a
symmetric
band
matrix
with
lower
bandwidth
KL
*>
and
upper
bandwidth
KU
and
with
the
only
the
lower
*>
half
stored
.
*>
=
'Q'
:
A
is
a
symmetric
band
matrix
with
lower
bandwidth
KL
*>
and
upper
bandwidth
KU
and
with
the
only
the
upper
*>
half
stored
.
*>
=
'Z'
:
A
is
a
band
matrix
with
lower
bandwidth
KL
and
upper
*>
bandwidth
KU
.
See
DGBTRF
for
storage
details
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
KL
*>
\
verbatim
*>
KL
is
INTEGER
*>
The
lower
bandwidth
of
A
.
Referenced
only
if TYPE
=
'B'
,
*>
'Q'
or
'Z'
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
KU
*>
\
verbatim
*>
KU
is
INTEGER
*>
The
upper
bandwidth
of
A
.
Referenced
only
if TYPE
=
'B'
,
*>
'Q'
or
'Z'
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
CFROM
*>
\
verbatim
*>
CFROM
is
DOUBLE PRECISION
*>
\
endverbatim
*>
*>
\
param
[
in
]
CTO
*>
\
verbatim
*>
CTO
is
DOUBLE PRECISION
*>
*>
The
matrix
A
is
multiplied
by
CTO
/
CFROM
.
A
(
I
,
J
)
is
computed
*>
without
over
/
underflow
if
the
final
result
CTO
*
A
(
I
,
J
)
/
CFROM
*>
can
be
represented
without
over
/
underflow
.
CFROM
must
be
*>
nonzero
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
M
*>
\
verbatim
*>
M
is
INTEGER
*>
The
number
of
rows
of
the
matrix
A
.
M
>=
0.
*>
\
endverbatim
*>
*>
\
param
[
in
]
N
*>
\
verbatim
*>
N
is
INTEGER
*>
The
number
of
columns
of
the
matrix
A
.
N
>=
0.
*>
\
endverbatim
*>
*>
\
param
[
in
,
out
]
A
*>
\
verbatim
*>
A
is
DOUBLE PRECISION
array
,
dimension
(
LDA
,
N
)
*>
The
matrix
to
be
multiplied
by
CTO
/
CFROM
.
See
TYPE
for
the
*>
storage
type
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
LDA
*>
\
verbatim
*>
LDA
is
INTEGER
*>
The
leading
dimension
of
the
array
A
.
LDA
>=
max
(
1
,
M
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
INFO
*>
\
verbatim
*>
INFO
is
INTEGER
*>
0
-
successful
exit
*>
<
0
-
if
INFO
=
-
i
,
the
i
-
th
argument
had
an
illegal
value
.
*>
\
endverbatim
*
*
Authors
:
*
========
*
*>
\
author
Univ
.
of
Tennessee
*>
\
author
Univ
.
of
California
Berkeley
*>
\
author
Univ
.
of
Colorado
Denver
*>
\
author
NAG
Ltd
.
*
*>
\
date
September
2012
*
*>
\
ingroup
auxOTHERauxiliary
*
*
=====================================================================
SUBROUTINE
DLASCL
(
TYPE
,
KL
,
KU
,
CFROM
,
CTO
,
M
,
N
,
A
,
LDA
,
INFO
)
*
*
--
LAPACK
auxiliary
routine
(
version
3.4.2
)
--
*
--
LAPACK
is
a
software
package
provided
by
Univ
.
of
Tennessee
,
--
*
--
Univ
.
of
California
Berkeley
,
Univ
.
of
Colorado
Denver
and
NAG
Ltd
..
--
*
September
2012
*
*
..
Scalar
Arguments
..
CHARACTER
TYPE
INTEGER
INFO
,
KL
,
KU
,
LDA
,
M
,
N
DOUBLE PRECISION
CFROM
,
CTO
*
..
*
..
Array
Arguments
..
DOUBLE PRECISION
A
(
LDA
,
*
)
*
..
*
*
=====================================================================
*
*
..
Parameters
..
DOUBLE PRECISION
ZERO
,
ONE
PARAMETER
(
ZERO
=
0.0
D0
,
ONE
=
1.0
D0
)
*
..
*
..
Local
Scalars
..
LOGICAL
DONE
INTEGER
I
,
ITYPE
,
J
,
K1
,
K2
,
K3
,
K4
DOUBLE PRECISION
BIGNUM
,
CFROM1
,
CFROMC
,
CTO1
,
CTOC
,
MUL
,
SMLNUM
*
..
*
..
External
Functions
..
LOGICAL
LSAME
,
DISNAN
DOUBLE PRECISION
DLAMCH
EXTERNAL
LSAME
,
DLAMCH
,
DISNAN
*
..
*
..
Intrinsic
Functions
..
INTRINSIC
ABS
,
MAX
,
MIN
*
..
*
..
External
Subroutines
..
EXTERNAL
XERBLA
*
..
*
..
Executable
Statements
..
*
*
Test
the
input
arguments
*
INFO
=
0
*
IF
(
LSAME
(
TYPE
,
'G'
)
)
THEN
ITYPE
=
0
ELSE IF
(
LSAME
(
TYPE
,
'L'
)
)
THEN
ITYPE
=
1
ELSE IF
(
LSAME
(
TYPE
,
'U'
)
)
THEN
ITYPE
=
2
ELSE IF
(
LSAME
(
TYPE
,
'H'
)
)
THEN
ITYPE
=
3
ELSE IF
(
LSAME
(
TYPE
,
'B'
)
)
THEN
ITYPE
=
4
ELSE IF
(
LSAME
(
TYPE
,
'Q'
)
)
THEN
ITYPE
=
5
ELSE IF
(
LSAME
(
TYPE
,
'Z'
)
)
THEN
ITYPE
=
6
ELSE
ITYPE
=
-
1
END IF
*
IF
(
ITYPE
.EQ.
-
1
)
THEN
INFO
=
-
1
ELSE IF
(
CFROM
.EQ.
ZERO
.OR.
DISNAN
(
CFROM
)
)
THEN
INFO
=
-
4
ELSE IF
(
DISNAN
(
CTO
)
)
THEN
INFO
=
-
5
ELSE IF
(
M
.LT.
0
)
THEN
INFO
=
-
6
ELSE IF
(
N
.LT.
0
.OR.
(
ITYPE
.EQ.
4
.AND.
N
.NE.
M
)
.OR.
$
(
ITYPE
.EQ.
5
.AND.
N
.NE.
M
)
)
THEN
INFO
=
-
7
ELSE IF
(
ITYPE
.LE.
3
.AND.
LDA
.LT.
MAX
(
1
,
M
)
)
THEN
INFO
=
-
9
ELSE IF
(
ITYPE
.GE.
4
)
THEN
IF
(
KL
.LT.
0
.OR.
KL
.GT.
MAX
(
M
-
1
,
0
)
)
THEN
INFO
=
-
2
ELSE IF
(
KU
.LT.
0
.OR.
KU
.GT.
MAX
(
N
-
1
,
0
)
.OR.
$
(
(
ITYPE
.EQ.
4
.OR.
ITYPE
.EQ.
5
)
.AND.
KL
.NE.
KU
)
)
$
THEN
INFO
=
-
3
ELSE IF
(
(
ITYPE
.EQ.
4
.AND.
LDA
.LT.
KL
+
1
)
.OR.
$
(
ITYPE
.EQ.
5
.AND.
LDA
.LT.
KU
+
1
)
.OR.
$
(
ITYPE
.EQ.
6
.AND.
LDA
.LT.
2
*
KL
+
KU
+
1
)
)
THEN
INFO
=
-
9
END IF
END IF
*
IF
(
INFO
.NE.
0
)
THEN
CALL
XERBLA
(
'DLASCL'
,
-
INFO
)
RETURN
END IF
*
*
Quick
return if
possible
*
IF
(
N
.EQ.
0
.OR.
M
.EQ.
0
)
$
RETURN
*
*
Get
machine
parameters
*
SMLNUM
=
DLAMCH
(
'S'
)
BIGNUM
=
ONE
/
SMLNUM
*
CFROMC
=
CFROM
CTOC
=
CTO
*
10
CONTINUE
CFROM1
=
CFROMC
*
SMLNUM
IF
(
CFROM1
.EQ.
CFROMC
)
THEN
! CFROMC is an inf. Multiply by a correctly signed zero for
! finite CTOC, or a NaN if CTOC is infinite.
MUL
=
CTOC
/
CFROMC
DONE
=
.TRUE.
CTO1
=
CTOC
ELSE
CTO1
=
CTOC
/
BIGNUM
IF
(
CTO1
.EQ.
CTOC
)
THEN
! CTOC is either 0 or an inf. In both cases, CTOC itself
! serves as the correct multiplication factor.
MUL
=
CTOC
DONE
=
.TRUE.
CFROMC
=
ONE
ELSE IF
(
ABS
(
CFROM1
)
.GT.
ABS
(
CTOC
)
.AND.
CTOC
.NE.
ZERO
)
THEN
MUL
=
SMLNUM
DONE
=
.FALSE.
CFROMC
=
CFROM1
ELSE IF
(
ABS
(
CTO1
)
.GT.
ABS
(
CFROMC
)
)
THEN
MUL
=
BIGNUM
DONE
=
.FALSE.
CTOC
=
CTO1
ELSE
MUL
=
CTOC
/
CFROMC
DONE
=
.TRUE.
END IF
END IF
*
IF
(
ITYPE
.EQ.
0
)
THEN
*
*
Full
matrix
*
DO
30
J
=
1
,
N
DO
20
I
=
1
,
M
A
(
I
,
J
)
=
A
(
I
,
J
)
*
MUL
20
CONTINUE
30
CONTINUE
*
ELSE IF
(
ITYPE
.EQ.
1
)
THEN
*
*
Lower
triangular
matrix
*
DO
50
J
=
1
,
N
DO
40
I
=
J
,
M
A
(
I
,
J
)
=
A
(
I
,
J
)
*
MUL
40
CONTINUE
50
CONTINUE
*
ELSE IF
(
ITYPE
.EQ.
2
)
THEN
*
*
Upper
triangular
matrix
*
DO
70
J
=
1
,
N
DO
60
I
=
1
,
MIN
(
J
,
M
)
A
(
I
,
J
)
=
A
(
I
,
J
)
*
MUL
60
CONTINUE
70
CONTINUE
*
ELSE IF
(
ITYPE
.EQ.
3
)
THEN
*
*
Upper
Hessenberg
matrix
*
DO
90
J
=
1
,
N
DO
80
I
=
1
,
MIN
(
J
+
1
,
M
)
A
(
I
,
J
)
=
A
(
I
,
J
)
*
MUL
80
CONTINUE
90
CONTINUE
*
ELSE IF
(
ITYPE
.EQ.
4
)
THEN
*
*
Lower
half
of
a
symmetric
band
matrix
*
K3
=
KL
+
1
K4
=
N
+
1
DO
110
J
=
1
,
N
DO
100
I
=
1
,
MIN
(
K3
,
K4
-
J
)
A
(
I
,
J
)
=
A
(
I
,
J
)
*
MUL
100
CONTINUE
110
CONTINUE
*
ELSE IF
(
ITYPE
.EQ.
5
)
THEN
*
*
Upper
half
of
a
symmetric
band
matrix
*
K1
=
KU
+
2
K3
=
KU
+
1
DO
130
J
=
1
,
N
DO
120
I
=
MAX
(
K1
-
J
,
1
),
K3
A
(
I
,
J
)
=
A
(
I
,
J
)
*
MUL
120
CONTINUE
130
CONTINUE
*
ELSE IF
(
ITYPE
.EQ.
6
)
THEN
*
*
Band
matrix
*
K1
=
KL
+
KU
+
2
K2
=
KL
+
1
K3
=
2
*
KL
+
KU
+
1
K4
=
KL
+
KU
+
1
+
M
DO
150
J
=
1
,
N
DO
140
I
=
MAX
(
K1
-
J
,
K2
),
MIN
(
K3
,
K4
-
J
)
A
(
I
,
J
)
=
A
(
I
,
J
)
*
MUL
140
CONTINUE
150
CONTINUE
*
END IF
*
IF
(
.NOT.
DONE
)
$
GO
TO
10
*
RETURN
*
*
End
of
DLASCL
*
END
Event Timeline
Log In to Comment