Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90921064
dsytd2.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 00:30
Size
9 KB
Mime Type
text/html
Expires
Fri, Nov 8, 00:30 (2 d)
Engine
blob
Format
Raw Data
Handle
22157400
Attached To
rLAMMPS lammps
dsytd2.f
View Options
*>
\
brief
\
b
DSYTD2
reduces
a
symmetric
matrix
to
real
symmetric
tridiagonal
form
by
an
orthogonal
similarity
transformation
(
unblocked
algorithm
)
.
*
*
===========
DOCUMENTATION
===========
*
*
Online
html
documentation
available
at
*
http
:
//
www
.
netlib
.
org
/
lapack
/
explore
-
html
/
*
*>
\
htmlonly
*>
Download
DSYTD2
+
dependencies
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytd2.f"
>
*>
[
TGZ
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytd2.f"
>
*>
[
ZIP
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytd2.f"
>
*>
[
TXT
]
</
a
>
*>
\
endhtmlonly
*
*
Definition
:
*
===========
*
*
SUBROUTINE
DSYTD2
(
UPLO
,
N
,
A
,
LDA
,
D
,
E
,
TAU
,
INFO
)
*
*
..
Scalar
Arguments
..
*
CHARACTER
UPLO
*
INTEGER
INFO
,
LDA
,
N
*
..
*
..
Array
Arguments
..
*
DOUBLE PRECISION
A
(
LDA
,
*
),
D
(
*
),
E
(
*
),
TAU
(
*
)
*
..
*
*
*>
\
par
Purpose
:
*
=============
*>
*>
\
verbatim
*>
*>
DSYTD2
reduces
a
real
symmetric
matrix
A
to
symmetric
tridiagonal
*>
form
T
by
an
orthogonal
similarity
transformation
:
Q
**
T
*
A
*
Q
=
T
.
*>
\
endverbatim
*
*
Arguments
:
*
==========
*
*>
\
param
[
in
]
UPLO
*>
\
verbatim
*>
UPLO
is
CHARACTER
*
1
*>
Specifies
whether
the
upper
or
lower
triangular
part
of
the
*>
symmetric
matrix
A
is
stored
:
*>
=
'U'
:
Upper
triangular
*>
=
'L'
:
Lower
triangular
*>
\
endverbatim
*>
*>
\
param
[
in
]
N
*>
\
verbatim
*>
N
is
INTEGER
*>
The
order
of
the
matrix
A
.
N
>=
0.
*>
\
endverbatim
*>
*>
\
param
[
in
,
out
]
A
*>
\
verbatim
*>
A
is
DOUBLE PRECISION
array
,
dimension
(
LDA
,
N
)
*>
On
entry
,
the
symmetric
matrix
A
.
If
UPLO
=
'U'
,
the
leading
*>
n
-
by
-
n
upper
triangular
part
of
A
contains
the
upper
*>
triangular
part
of
the
matrix
A
,
and
the
strictly
lower
*>
triangular
part
of
A
is
not
referenced
.
If
UPLO
=
'L'
,
the
*>
leading
n
-
by
-
n
lower
triangular
part
of
A
contains
the
lower
*>
triangular
part
of
the
matrix
A
,
and
the
strictly
upper
*>
triangular
part
of
A
is
not
referenced
.
*>
On
exit
,
if
UPLO
=
'U'
,
the
diagonal
and
first
superdiagonal
*>
of
A
are
overwritten
by
the
corresponding
elements
of
the
*>
tridiagonal
matrix
T
,
and
the
elements
above
the
first
*>
superdiagonal
,
with
the
array
TAU
,
represent
the
orthogonal
*>
matrix
Q
as
a
product
of
elementary
reflectors
;
if
UPLO
*>
=
'L'
,
the
diagonal
and
first
subdiagonal
of
A
are
over
-
*>
written
by
the
corresponding
elements
of
the
tridiagonal
*>
matrix
T
,
and
the
elements
below
the
first
subdiagonal
,
with
*>
the
array
TAU
,
represent
the
orthogonal
matrix
Q
as
a
product
*>
of
elementary
reflectors
.
See
Further
Details
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
LDA
*>
\
verbatim
*>
LDA
is
INTEGER
*>
The
leading
dimension
of
the
array
A
.
LDA
>=
max
(
1
,
N
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
D
*>
\
verbatim
*>
D
is
DOUBLE PRECISION
array
,
dimension
(
N
)
*>
The
diagonal
elements
of
the
tridiagonal
matrix
T
:
*>
D
(
i
)
=
A
(
i
,
i
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
E
*>
\
verbatim
*>
E
is
DOUBLE PRECISION
array
,
dimension
(
N
-
1
)
*>
The
off
-
diagonal
elements
of
the
tridiagonal
matrix
T
:
*>
E
(
i
)
=
A
(
i
,
i
+
1
)
if
UPLO
=
'U'
,
E
(
i
)
=
A
(
i
+
1
,
i
)
if
UPLO
=
'L'
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
TAU
*>
\
verbatim
*>
TAU
is
DOUBLE PRECISION
array
,
dimension
(
N
-
1
)
*>
The
scalar
factors
of
the
elementary
reflectors
(
see
Further
*>
Details
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
INFO
*>
\
verbatim
*>
INFO
is
INTEGER
*>
=
0
:
successful
exit
*>
<
0
:
if
INFO
=
-
i
,
the
i
-
th
argument
had
an
illegal
value
.
*>
\
endverbatim
*
*
Authors
:
*
========
*
*>
\
author
Univ
.
of
Tennessee
*>
\
author
Univ
.
of
California
Berkeley
*>
\
author
Univ
.
of
Colorado
Denver
*>
\
author
NAG
Ltd
.
*
*>
\
date
September
2012
*
*>
\
ingroup
doubleSYcomputational
*
*>
\
par
Further
Details
:
*
=====================
*>
*>
\
verbatim
*>
*>
If
UPLO
=
'U'
,
the
matrix
Q
is
represented
as
a
product
of
elementary
*>
reflectors
*>
*>
Q
=
H
(
n
-
1
)
.
.
.
H
(
2
)
H
(
1
)
.
*>
*>
Each
H
(
i
)
has
the
form
*>
*>
H
(
i
)
=
I
-
tau
*
v
*
v
**
T
*>
*>
where
tau
is
a
real
scalar
,
and
v
is
a
real
vector
with
*>
v
(
i
+
1
:
n
)
=
0
and
v
(
i
)
=
1
;
v
(
1
:
i
-
1
)
is
stored
on
exit
in
*>
A
(
1
:
i
-
1
,
i
+
1
),
and
tau
in
TAU
(
i
)
.
*>
*>
If
UPLO
=
'L'
,
the
matrix
Q
is
represented
as
a
product
of
elementary
*>
reflectors
*>
*>
Q
=
H
(
1
)
H
(
2
)
.
.
.
H
(
n
-
1
)
.
*>
*>
Each
H
(
i
)
has
the
form
*>
*>
H
(
i
)
=
I
-
tau
*
v
*
v
**
T
*>
*>
where
tau
is
a
real
scalar
,
and
v
is
a
real
vector
with
*>
v
(
1
:
i
)
=
0
and
v
(
i
+
1
)
=
1
;
v
(
i
+
2
:
n
)
is
stored
on
exit
in
A
(
i
+
2
:
n
,
i
),
*>
and
tau
in
TAU
(
i
)
.
*>
*>
The
contents
of
A
on
exit
are
illustrated
by
the
following
examples
*>
with
n
=
5
:
*>
*>
if
UPLO
=
'U'
:
if
UPLO
=
'L'
:
*>
*>
(
d
e
v2
v3
v4
)
(
d
)
*>
(
d
e
v3
v4
)
(
e
d
)
*>
(
d
e
v4
)
(
v1
e
d
)
*>
(
d
e
)
(
v1
v2
e
d
)
*>
(
d
)
(
v1
v2
v3
e
d
)
*>
*>
where
d
and
e
denote
diagonal
and
off
-
diagonal
elements
of
T
,
and
vi
*>
denotes
an
element
of
the
vector
defining
H
(
i
)
.
*>
\
endverbatim
*>
*
=====================================================================
SUBROUTINE
DSYTD2
(
UPLO
,
N
,
A
,
LDA
,
D
,
E
,
TAU
,
INFO
)
*
*
--
LAPACK
computational
routine
(
version
3.4.2
)
--
*
--
LAPACK
is
a
software
package
provided
by
Univ
.
of
Tennessee
,
--
*
--
Univ
.
of
California
Berkeley
,
Univ
.
of
Colorado
Denver
and
NAG
Ltd
..
--
*
September
2012
*
*
..
Scalar
Arguments
..
CHARACTER
UPLO
INTEGER
INFO
,
LDA
,
N
*
..
*
..
Array
Arguments
..
DOUBLE PRECISION
A
(
LDA
,
*
),
D
(
*
),
E
(
*
),
TAU
(
*
)
*
..
*
*
=====================================================================
*
*
..
Parameters
..
DOUBLE PRECISION
ONE
,
ZERO
,
HALF
PARAMETER
(
ONE
=
1.0
D0
,
ZERO
=
0.0
D0
,
$
HALF
=
1.0
D0
/
2.0
D0
)
*
..
*
..
Local
Scalars
..
LOGICAL
UPPER
INTEGER
I
DOUBLE PRECISION
ALPHA
,
TAUI
*
..
*
..
External
Subroutines
..
EXTERNAL
DAXPY
,
DLARFG
,
DSYMV
,
DSYR2
,
XERBLA
*
..
*
..
External
Functions
..
LOGICAL
LSAME
DOUBLE PRECISION
DDOT
EXTERNAL
LSAME
,
DDOT
*
..
*
..
Intrinsic
Functions
..
INTRINSIC
MAX
,
MIN
*
..
*
..
Executable
Statements
..
*
*
Test
the
input
parameters
*
INFO
=
0
UPPER
=
LSAME
(
UPLO
,
'U'
)
IF
(
.NOT.
UPPER
.AND.
.NOT.
LSAME
(
UPLO
,
'L'
)
)
THEN
INFO
=
-
1
ELSE IF
(
N
.LT.
0
)
THEN
INFO
=
-
2
ELSE IF
(
LDA
.LT.
MAX
(
1
,
N
)
)
THEN
INFO
=
-
4
END IF
IF
(
INFO
.NE.
0
)
THEN
CALL
XERBLA
(
'DSYTD2'
,
-
INFO
)
RETURN
END IF
*
*
Quick
return if
possible
*
IF
(
N
.LE.
0
)
$
RETURN
*
IF
(
UPPER
)
THEN
*
*
Reduce
the
upper
triangle
of
A
*
DO
10
I
=
N
-
1
,
1
,
-
1
*
*
Generate
elementary
reflector
H
(
i
)
=
I
-
tau
*
v
*
v
**
T
*
to
annihilate
A
(
1
:
i
-
1
,
i
+
1
)
*
CALL
DLARFG
(
I
,
A
(
I
,
I
+
1
),
A
(
1
,
I
+
1
),
1
,
TAUI
)
E
(
I
)
=
A
(
I
,
I
+
1
)
*
IF
(
TAUI
.NE.
ZERO
)
THEN
*
*
Apply
H
(
i
)
from
both
sides
to
A
(
1
:
i
,
1
:
i
)
*
A
(
I
,
I
+
1
)
=
ONE
*
*
Compute
x
:
=
tau
*
A
*
v
storing
x
in
TAU
(
1
:
i
)
*
CALL
DSYMV
(
UPLO
,
I
,
TAUI
,
A
,
LDA
,
A
(
1
,
I
+
1
),
1
,
ZERO
,
$
TAU
,
1
)
*
*
Compute
w
:
=
x
-
1
/
2
*
tau
*
(
x
**
T
*
v
)
*
v
*
ALPHA
=
-
HALF
*
TAUI
*
DDOT
(
I
,
TAU
,
1
,
A
(
1
,
I
+
1
),
1
)
CALL
DAXPY
(
I
,
ALPHA
,
A
(
1
,
I
+
1
),
1
,
TAU
,
1
)
*
*
Apply
the
transformation
as
a
rank
-
2
update
:
*
A
:
=
A
-
v
*
w
**
T
-
w
*
v
**
T
*
CALL
DSYR2
(
UPLO
,
I
,
-
ONE
,
A
(
1
,
I
+
1
),
1
,
TAU
,
1
,
A
,
$
LDA
)
*
A
(
I
,
I
+
1
)
=
E
(
I
)
END IF
D
(
I
+
1
)
=
A
(
I
+
1
,
I
+
1
)
TAU
(
I
)
=
TAUI
10
CONTINUE
D
(
1
)
=
A
(
1
,
1
)
ELSE
*
*
Reduce
the
lower
triangle
of
A
*
DO
20
I
=
1
,
N
-
1
*
*
Generate
elementary
reflector
H
(
i
)
=
I
-
tau
*
v
*
v
**
T
*
to
annihilate
A
(
i
+
2
:
n
,
i
)
*
CALL
DLARFG
(
N
-
I
,
A
(
I
+
1
,
I
),
A
(
MIN
(
I
+
2
,
N
),
I
),
1
,
$
TAUI
)
E
(
I
)
=
A
(
I
+
1
,
I
)
*
IF
(
TAUI
.NE.
ZERO
)
THEN
*
*
Apply
H
(
i
)
from
both
sides
to
A
(
i
+
1
:
n
,
i
+
1
:
n
)
*
A
(
I
+
1
,
I
)
=
ONE
*
*
Compute
x
:
=
tau
*
A
*
v
storing
y
in
TAU
(
i
:
n
-
1
)
*
CALL
DSYMV
(
UPLO
,
N
-
I
,
TAUI
,
A
(
I
+
1
,
I
+
1
),
LDA
,
$
A
(
I
+
1
,
I
),
1
,
ZERO
,
TAU
(
I
),
1
)
*
*
Compute
w
:
=
x
-
1
/
2
*
tau
*
(
x
**
T
*
v
)
*
v
*
ALPHA
=
-
HALF
*
TAUI
*
DDOT
(
N
-
I
,
TAU
(
I
),
1
,
A
(
I
+
1
,
I
),
$
1
)
CALL
DAXPY
(
N
-
I
,
ALPHA
,
A
(
I
+
1
,
I
),
1
,
TAU
(
I
),
1
)
*
*
Apply
the
transformation
as
a
rank
-
2
update
:
*
A
:
=
A
-
v
*
w
**
T
-
w
*
v
**
T
*
CALL
DSYR2
(
UPLO
,
N
-
I
,
-
ONE
,
A
(
I
+
1
,
I
),
1
,
TAU
(
I
),
1
,
$
A
(
I
+
1
,
I
+
1
),
LDA
)
*
A
(
I
+
1
,
I
)
=
E
(
I
)
END IF
D
(
I
)
=
A
(
I
,
I
)
TAU
(
I
)
=
TAUI
20
CONTINUE
D
(
N
)
=
A
(
N
,
N
)
END IF
*
RETURN
*
*
End
of
DSYTD2
*
END
Event Timeline
Log In to Comment