Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90392041
AngleAxis.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 06:25
Size
7 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 06:25 (2 d)
Engine
blob
Format
Raw Data
Handle
22065761
Attached To
rLAMMPS lammps
AngleAxis.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ANGLEAXIS_H
#define EIGEN_ANGLEAXIS_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class AngleAxis
*
* \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
*
* \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
*
* The following two typedefs are provided for convenience:
* \li \c AngleAxisf for \c float
* \li \c AngleAxisd for \c double
*
* Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
* mimic Euler-angles. Here is an example:
* \include AngleAxis_mimic_euler.cpp
* Output: \verbinclude AngleAxis_mimic_euler.out
*
* \note This class is not aimed to be used to store a rotation transformation,
* but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
* and transformation objects.
*
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
*/
namespace internal {
template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
{
typedef _Scalar Scalar;
};
}
template<typename _Scalar>
class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
{
typedef RotationBase<AngleAxis<_Scalar>,3> Base;
public:
using Base::operator*;
enum { Dim = 3 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
protected:
Vector3 m_axis;
Scalar m_angle;
public:
/** Default constructor without initialization. */
AngleAxis() {}
/** Constructs and initialize the angle-axis rotation from an \a angle in radian
* and an \a axis which \b must \b be \b normalized.
*
* \warning If the \a axis vector is not normalized, then the angle-axis object
* represents an invalid rotation. */
template<typename Derived>
inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived>
inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
/** \returns the value of the rotation angle in radian */
Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the stored angle in radian */
Scalar& angle() { return m_angle; }
/** \returns the rotation axis */
const Vector3& axis() const { return m_axis; }
/** \returns a read-write reference to the stored rotation axis.
*
* \warning The rotation axis must remain a \b unit vector.
*/
Vector3& axis() { return m_axis; }
/** Concatenates two rotations */
inline QuaternionType operator* (const AngleAxis& other) const
{ return QuaternionType(*this) * QuaternionType(other); }
/** Concatenates two rotations */
inline QuaternionType operator* (const QuaternionType& other) const
{ return QuaternionType(*this) * other; }
/** Concatenates two rotations */
friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
{ return a * QuaternionType(b); }
/** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
AngleAxis inverse() const
{ return AngleAxis(-m_angle, m_axis); }
template<class QuatDerived>
AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
template<typename Derived>
AngleAxis& operator=(const MatrixBase<Derived>& m);
template<typename Derived>
AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix3 toRotationMatrix(void) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
{
m_axis = other.axis().template cast<Scalar>();
m_angle = Scalar(other.angle());
}
static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
};
/** \ingroup Geometry_Module
* single precision angle-axis type */
typedef AngleAxis<float> AngleAxisf;
/** \ingroup Geometry_Module
* double precision angle-axis type */
typedef AngleAxis<double> AngleAxisd;
/** Set \c *this from a \b unit quaternion.
* The axis is normalized.
*
* \warning As any other method dealing with quaternion, if the input quaternion
* is not normalized then the result is undefined.
*/
template<typename Scalar>
template<typename QuatDerived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
{
using std::acos;
using std::min;
using std::max;
using std::sqrt;
Scalar n2 = q.vec().squaredNorm();
if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
{
m_angle = Scalar(0);
m_axis << Scalar(1), Scalar(0), Scalar(0);
}
else
{
m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
m_axis = q.vec() / sqrt(n2);
}
return *this;
}
/** Set \c *this from a 3x3 rotation matrix \a mat.
*/
template<typename Scalar>
template<typename Derived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
{
// Since a direct conversion would not be really faster,
// let's use the robust Quaternion implementation:
return *this = QuaternionType(mat);
}
/**
* \brief Sets \c *this from a 3x3 rotation matrix.
**/
template<typename Scalar>
template<typename Derived>
AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
return *this = QuaternionType(mat);
}
/** Constructs and \returns an equivalent 3x3 rotation matrix.
*/
template<typename Scalar>
typename AngleAxis<Scalar>::Matrix3
AngleAxis<Scalar>::toRotationMatrix(void) const
{
using std::sin;
using std::cos;
Matrix3 res;
Vector3 sin_axis = sin(m_angle) * m_axis;
Scalar c = cos(m_angle);
Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
Scalar tmp;
tmp = cos1_axis.x() * m_axis.y();
res.coeffRef(0,1) = tmp - sin_axis.z();
res.coeffRef(1,0) = tmp + sin_axis.z();
tmp = cos1_axis.x() * m_axis.z();
res.coeffRef(0,2) = tmp + sin_axis.y();
res.coeffRef(2,0) = tmp - sin_axis.y();
tmp = cos1_axis.y() * m_axis.z();
res.coeffRef(1,2) = tmp - sin_axis.x();
res.coeffRef(2,1) = tmp + sin_axis.x();
res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
return res;
}
} // end namespace Eigen
#endif // EIGEN_ANGLEAXIS_H
Event Timeline
Log In to Comment