Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92184598
HouseholderSequence.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 18, 02:53
Size
18 KB
Mime Type
text/x-c
Expires
Wed, Nov 20, 02:53 (2 d)
Engine
blob
Format
Raw Data
Handle
22388949
Attached To
rLAMMPS lammps
HouseholderSequence.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
#define EIGEN_HOUSEHOLDER_SEQUENCE_H
namespace Eigen {
/** \ingroup Householder_Module
* \householder_module
* \class HouseholderSequence
* \brief Sequence of Householder reflections acting on subspaces with decreasing size
* \tparam VectorsType type of matrix containing the Householder vectors
* \tparam CoeffsType type of vector containing the Householder coefficients
* \tparam Side either OnTheLeft (the default) or OnTheRight
*
* This class represents a product sequence of Householder reflections where the first Householder reflection
* acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
* the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
* spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
* one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
* are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
* HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
* and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
*
* More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
* form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
* v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
* v_i \f$ is a vector of the form
* \f[
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
* \f]
* The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
*
* Typical usages are listed below, where H is a HouseholderSequence:
* \code
* A.applyOnTheRight(H); // A = A * H
* A.applyOnTheLeft(H); // A = H * A
* A.applyOnTheRight(H.adjoint()); // A = A * H^*
* A.applyOnTheLeft(H.adjoint()); // A = H^* * A
* MatrixXd Q = H; // conversion to a dense matrix
* \endcode
* In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
*
* See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
namespace internal {
template<typename VectorsType, typename CoeffsType, int Side>
struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
{
typedef typename VectorsType::Scalar Scalar;
typedef typename VectorsType::Index Index;
typedef typename VectorsType::StorageKind StorageKind;
enum {
RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
: traits<VectorsType>::ColsAtCompileTime,
ColsAtCompileTime = RowsAtCompileTime,
MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
: traits<VectorsType>::MaxColsAtCompileTime,
MaxColsAtCompileTime = MaxRowsAtCompileTime,
Flags = 0
};
};
template<typename VectorsType, typename CoeffsType, int Side>
struct hseq_side_dependent_impl
{
typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
typedef typename VectorsType::Index Index;
static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
{
Index start = k+1+h.m_shift;
return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
}
};
template<typename VectorsType, typename CoeffsType>
struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
{
typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
typedef typename VectorsType::Index Index;
static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
{
Index start = k+1+h.m_shift;
return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
}
};
template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
{
typedef typename scalar_product_traits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
ResultScalar;
typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
};
} // end namespace internal
template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
: public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
{
typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType;
public:
enum {
RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
};
typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
typedef typename VectorsType::Index Index;
typedef HouseholderSequence<
typename internal::conditional<NumTraits<Scalar>::IsComplex,
typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
VectorsType>::type,
typename internal::conditional<NumTraits<Scalar>::IsComplex,
typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
CoeffsType>::type,
Side
> ConjugateReturnType;
/** \brief Constructor.
* \param[in] v %Matrix containing the essential parts of the Householder vectors
* \param[in] h Vector containing the Householder coefficients
*
* Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
* i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
* Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
* i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
* Householder reflections as there are columns.
*
* \note The %HouseholderSequence object stores \p v and \p h by reference.
*
* Example: \include HouseholderSequence_HouseholderSequence.cpp
* Output: \verbinclude HouseholderSequence_HouseholderSequence.out
*
* \sa setLength(), setShift()
*/
HouseholderSequence(const VectorsType& v, const CoeffsType& h)
: m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
m_shift(0)
{
}
/** \brief Copy constructor. */
HouseholderSequence(const HouseholderSequence& other)
: m_vectors(other.m_vectors),
m_coeffs(other.m_coeffs),
m_trans(other.m_trans),
m_length(other.m_length),
m_shift(other.m_shift)
{
}
/** \brief Number of rows of transformation viewed as a matrix.
* \returns Number of rows
* \details This equals the dimension of the space that the transformation acts on.
*/
Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
/** \brief Number of columns of transformation viewed as a matrix.
* \returns Number of columns
* \details This equals the dimension of the space that the transformation acts on.
*/
Index cols() const { return rows(); }
/** \brief Essential part of a Householder vector.
* \param[in] k Index of Householder reflection
* \returns Vector containing non-trivial entries of k-th Householder vector
*
* This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
* length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
* \f[
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
* \f]
* The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
* passed to the constructor.
*
* \sa setShift(), shift()
*/
const EssentialVectorType essentialVector(Index k) const
{
eigen_assert(k >= 0 && k < m_length);
return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
}
/** \brief %Transpose of the Householder sequence. */
HouseholderSequence transpose() const
{
return HouseholderSequence(*this).setTrans(!m_trans);
}
/** \brief Complex conjugate of the Householder sequence. */
ConjugateReturnType conjugate() const
{
return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
.setTrans(m_trans)
.setLength(m_length)
.setShift(m_shift);
}
/** \brief Adjoint (conjugate transpose) of the Householder sequence. */
ConjugateReturnType adjoint() const
{
return conjugate().setTrans(!m_trans);
}
/** \brief Inverse of the Householder sequence (equals the adjoint). */
ConjugateReturnType inverse() const { return adjoint(); }
/** \internal */
template<typename DestType> inline void evalTo(DestType& dst) const
{
Matrix<Scalar, DestType::RowsAtCompileTime, 1,
AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
evalTo(dst, workspace);
}
/** \internal */
template<typename Dest, typename Workspace>
void evalTo(Dest& dst, Workspace& workspace) const
{
workspace.resize(rows());
Index vecs = m_length;
if( internal::is_same<typename internal::remove_all<VectorsType>::type,Dest>::value
&& internal::extract_data(dst) == internal::extract_data(m_vectors))
{
// in-place
dst.diagonal().setOnes();
dst.template triangularView<StrictlyUpper>().setZero();
for(Index k = vecs-1; k >= 0; --k)
{
Index cornerSize = rows() - k - m_shift;
if(m_trans)
dst.bottomRightCorner(cornerSize, cornerSize)
.applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
else
dst.bottomRightCorner(cornerSize, cornerSize)
.applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
// clear the off diagonal vector
dst.col(k).tail(rows()-k-1).setZero();
}
// clear the remaining columns if needed
for(Index k = 0; k<cols()-vecs ; ++k)
dst.col(k).tail(rows()-k-1).setZero();
}
else
{
dst.setIdentity(rows(), rows());
for(Index k = vecs-1; k >= 0; --k)
{
Index cornerSize = rows() - k - m_shift;
if(m_trans)
dst.bottomRightCorner(cornerSize, cornerSize)
.applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
else
dst.bottomRightCorner(cornerSize, cornerSize)
.applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
}
}
}
/** \internal */
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
{
Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows());
applyThisOnTheRight(dst, workspace);
}
/** \internal */
template<typename Dest, typename Workspace>
inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
{
workspace.resize(dst.rows());
for(Index k = 0; k < m_length; ++k)
{
Index actual_k = m_trans ? m_length-k-1 : k;
dst.rightCols(rows()-m_shift-actual_k)
.applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
}
}
/** \internal */
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
{
Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace(dst.cols());
applyThisOnTheLeft(dst, workspace);
}
/** \internal */
template<typename Dest, typename Workspace>
inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const
{
workspace.resize(dst.cols());
for(Index k = 0; k < m_length; ++k)
{
Index actual_k = m_trans ? k : m_length-k-1;
dst.bottomRows(rows()-m_shift-actual_k)
.applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
}
}
/** \brief Computes the product of a Householder sequence with a matrix.
* \param[in] other %Matrix being multiplied.
* \returns Expression object representing the product.
*
* This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
* and \f$ M \f$ is the matrix \p other.
*/
template<typename OtherDerived>
typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
{
typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
applyThisOnTheLeft(res);
return res;
}
template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
/** \brief Sets the length of the Householder sequence.
* \param [in] length New value for the length.
*
* By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
* to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
* is smaller. After this function is called, the length equals \p length.
*
* \sa length()
*/
HouseholderSequence& setLength(Index length)
{
m_length = length;
return *this;
}
/** \brief Sets the shift of the Householder sequence.
* \param [in] shift New value for the shift.
*
* By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
* column of the matrix \p v passed to the constructor corresponds to the i-th Householder
* reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
* H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
* Householder reflection.
*
* \sa shift()
*/
HouseholderSequence& setShift(Index shift)
{
m_shift = shift;
return *this;
}
Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */
Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */
/* Necessary for .adjoint() and .conjugate() */
template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
protected:
/** \brief Sets the transpose flag.
* \param [in] trans New value of the transpose flag.
*
* By default, the transpose flag is not set. If the transpose flag is set, then this object represents
* \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
*
* \sa trans()
*/
HouseholderSequence& setTrans(bool trans)
{
m_trans = trans;
return *this;
}
bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */
typename VectorsType::Nested m_vectors;
typename CoeffsType::Nested m_coeffs;
bool m_trans;
Index m_length;
Index m_shift;
};
/** \brief Computes the product of a matrix with a Householder sequence.
* \param[in] other %Matrix being multiplied.
* \param[in] h %HouseholderSequence being multiplied.
* \returns Expression object representing the product.
*
* This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
* Householder sequence represented by \p h.
*/
template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
{
typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
h.applyThisOnTheRight(res);
return res;
}
/** \ingroup Householder_Module \householder_module
* \brief Convenience function for constructing a Householder sequence.
* \returns A HouseholderSequence constructed from the specified arguments.
*/
template<typename VectorsType, typename CoeffsType>
HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
{
return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
}
/** \ingroup Householder_Module \householder_module
* \brief Convenience function for constructing a Householder sequence.
* \returns A HouseholderSequence constructed from the specified arguments.
* \details This function differs from householderSequence() in that the template argument \p OnTheSide of
* the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
*/
template<typename VectorsType, typename CoeffsType>
HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
{
return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
}
} // end namespace Eigen
#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
Event Timeline
Log In to Comment