Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92175317
JacobiSVD.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 18, 00:54
Size
38 KB
Mime Type
text/x-c++
Expires
Wed, Nov 20, 00:54 (2 d)
Engine
blob
Format
Raw Data
Handle
22385409
Attached To
rLAMMPS lammps
JacobiSVD.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H
namespace
Eigen
{
namespace
internal
{
// forward declaration (needed by ICC)
// the empty body is required by MSVC
template
<
typename
MatrixType
,
int
QRPreconditioner
,
bool
IsComplex
=
NumTraits
<
typename
MatrixType
::
Scalar
>::
IsComplex
>
struct
svd_precondition_2x2_block_to_be_real
{};
/*** QR preconditioners (R-SVD)
***
*** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
*** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
*** JacobiSVD which by itself is only able to work on square matrices.
***/
enum
{
PreconditionIfMoreColsThanRows
,
PreconditionIfMoreRowsThanCols
};
template
<
typename
MatrixType
,
int
QRPreconditioner
,
int
Case
>
struct
qr_preconditioner_should_do_anything
{
enum
{
a
=
MatrixType
::
RowsAtCompileTime
!=
Dynamic
&&
MatrixType
::
ColsAtCompileTime
!=
Dynamic
&&
MatrixType
::
ColsAtCompileTime
<=
MatrixType
::
RowsAtCompileTime
,
b
=
MatrixType
::
RowsAtCompileTime
!=
Dynamic
&&
MatrixType
::
ColsAtCompileTime
!=
Dynamic
&&
MatrixType
::
RowsAtCompileTime
<=
MatrixType
::
ColsAtCompileTime
,
ret
=
!
(
(
QRPreconditioner
==
NoQRPreconditioner
)
||
(
Case
==
PreconditionIfMoreColsThanRows
&&
bool
(
a
))
||
(
Case
==
PreconditionIfMoreRowsThanCols
&&
bool
(
b
))
)
};
};
template
<
typename
MatrixType
,
int
QRPreconditioner
,
int
Case
,
bool
DoAnything
=
qr_preconditioner_should_do_anything
<
MatrixType
,
QRPreconditioner
,
Case
>::
ret
>
struct
qr_preconditioner_impl
{};
template
<
typename
MatrixType
,
int
QRPreconditioner
,
int
Case
>
class
qr_preconditioner_impl
<
MatrixType
,
QRPreconditioner
,
Case
,
false
>
{
public:
typedef
typename
MatrixType
::
Index
Index
;
void
allocate
(
const
JacobiSVD
<
MatrixType
,
QRPreconditioner
>&
)
{}
bool
run
(
JacobiSVD
<
MatrixType
,
QRPreconditioner
>&
,
const
MatrixType
&
)
{
return
false
;
}
};
/*** preconditioner using FullPivHouseholderQR ***/
template
<
typename
MatrixType
>
class
qr_preconditioner_impl
<
MatrixType
,
FullPivHouseholderQRPreconditioner
,
PreconditionIfMoreRowsThanCols
,
true
>
{
public:
typedef
typename
MatrixType
::
Index
Index
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
enum
{
RowsAtCompileTime
=
MatrixType
::
RowsAtCompileTime
,
MaxRowsAtCompileTime
=
MatrixType
::
MaxRowsAtCompileTime
};
typedef
Matrix
<
Scalar
,
1
,
RowsAtCompileTime
,
RowMajor
,
1
,
MaxRowsAtCompileTime
>
WorkspaceType
;
void
allocate
(
const
JacobiSVD
<
MatrixType
,
FullPivHouseholderQRPreconditioner
>&
svd
)
{
if
(
svd
.
rows
()
!=
m_qr
.
rows
()
||
svd
.
cols
()
!=
m_qr
.
cols
())
{
m_qr
.
~
QRType
();
::
new
(
&
m_qr
)
QRType
(
svd
.
rows
(),
svd
.
cols
());
}
if
(
svd
.
m_computeFullU
)
m_workspace
.
resize
(
svd
.
rows
());
}
bool
run
(
JacobiSVD
<
MatrixType
,
FullPivHouseholderQRPreconditioner
>&
svd
,
const
MatrixType
&
matrix
)
{
if
(
matrix
.
rows
()
>
matrix
.
cols
())
{
m_qr
.
compute
(
matrix
);
svd
.
m_workMatrix
=
m_qr
.
matrixQR
().
block
(
0
,
0
,
matrix
.
cols
(),
matrix
.
cols
()).
template
triangularView
<
Upper
>
();
if
(
svd
.
m_computeFullU
)
m_qr
.
matrixQ
().
evalTo
(
svd
.
m_matrixU
,
m_workspace
);
if
(
svd
.
computeV
())
svd
.
m_matrixV
=
m_qr
.
colsPermutation
();
return
true
;
}
return
false
;
}
private:
typedef
FullPivHouseholderQR
<
MatrixType
>
QRType
;
QRType
m_qr
;
WorkspaceType
m_workspace
;
};
template
<
typename
MatrixType
>
class
qr_preconditioner_impl
<
MatrixType
,
FullPivHouseholderQRPreconditioner
,
PreconditionIfMoreColsThanRows
,
true
>
{
public:
typedef
typename
MatrixType
::
Index
Index
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
enum
{
RowsAtCompileTime
=
MatrixType
::
RowsAtCompileTime
,
ColsAtCompileTime
=
MatrixType
::
ColsAtCompileTime
,
MaxRowsAtCompileTime
=
MatrixType
::
MaxRowsAtCompileTime
,
MaxColsAtCompileTime
=
MatrixType
::
MaxColsAtCompileTime
,
Options
=
MatrixType
::
Options
};
typedef
Matrix
<
Scalar
,
ColsAtCompileTime
,
RowsAtCompileTime
,
Options
,
MaxColsAtCompileTime
,
MaxRowsAtCompileTime
>
TransposeTypeWithSameStorageOrder
;
void
allocate
(
const
JacobiSVD
<
MatrixType
,
FullPivHouseholderQRPreconditioner
>&
svd
)
{
if
(
svd
.
cols
()
!=
m_qr
.
rows
()
||
svd
.
rows
()
!=
m_qr
.
cols
())
{
m_qr
.
~
QRType
();
::
new
(
&
m_qr
)
QRType
(
svd
.
cols
(),
svd
.
rows
());
}
m_adjoint
.
resize
(
svd
.
cols
(),
svd
.
rows
());
if
(
svd
.
m_computeFullV
)
m_workspace
.
resize
(
svd
.
cols
());
}
bool
run
(
JacobiSVD
<
MatrixType
,
FullPivHouseholderQRPreconditioner
>&
svd
,
const
MatrixType
&
matrix
)
{
if
(
matrix
.
cols
()
>
matrix
.
rows
())
{
m_adjoint
=
matrix
.
adjoint
();
m_qr
.
compute
(
m_adjoint
);
svd
.
m_workMatrix
=
m_qr
.
matrixQR
().
block
(
0
,
0
,
matrix
.
rows
(),
matrix
.
rows
()).
template
triangularView
<
Upper
>
().
adjoint
();
if
(
svd
.
m_computeFullV
)
m_qr
.
matrixQ
().
evalTo
(
svd
.
m_matrixV
,
m_workspace
);
if
(
svd
.
computeU
())
svd
.
m_matrixU
=
m_qr
.
colsPermutation
();
return
true
;
}
else
return
false
;
}
private:
typedef
FullPivHouseholderQR
<
TransposeTypeWithSameStorageOrder
>
QRType
;
QRType
m_qr
;
TransposeTypeWithSameStorageOrder
m_adjoint
;
typename
internal
::
plain_row_type
<
MatrixType
>::
type
m_workspace
;
};
/*** preconditioner using ColPivHouseholderQR ***/
template
<
typename
MatrixType
>
class
qr_preconditioner_impl
<
MatrixType
,
ColPivHouseholderQRPreconditioner
,
PreconditionIfMoreRowsThanCols
,
true
>
{
public:
typedef
typename
MatrixType
::
Index
Index
;
void
allocate
(
const
JacobiSVD
<
MatrixType
,
ColPivHouseholderQRPreconditioner
>&
svd
)
{
if
(
svd
.
rows
()
!=
m_qr
.
rows
()
||
svd
.
cols
()
!=
m_qr
.
cols
())
{
m_qr
.
~
QRType
();
::
new
(
&
m_qr
)
QRType
(
svd
.
rows
(),
svd
.
cols
());
}
if
(
svd
.
m_computeFullU
)
m_workspace
.
resize
(
svd
.
rows
());
else
if
(
svd
.
m_computeThinU
)
m_workspace
.
resize
(
svd
.
cols
());
}
bool
run
(
JacobiSVD
<
MatrixType
,
ColPivHouseholderQRPreconditioner
>&
svd
,
const
MatrixType
&
matrix
)
{
if
(
matrix
.
rows
()
>
matrix
.
cols
())
{
m_qr
.
compute
(
matrix
);
svd
.
m_workMatrix
=
m_qr
.
matrixQR
().
block
(
0
,
0
,
matrix
.
cols
(),
matrix
.
cols
()).
template
triangularView
<
Upper
>
();
if
(
svd
.
m_computeFullU
)
m_qr
.
householderQ
().
evalTo
(
svd
.
m_matrixU
,
m_workspace
);
else
if
(
svd
.
m_computeThinU
)
{
svd
.
m_matrixU
.
setIdentity
(
matrix
.
rows
(),
matrix
.
cols
());
m_qr
.
householderQ
().
applyThisOnTheLeft
(
svd
.
m_matrixU
,
m_workspace
);
}
if
(
svd
.
computeV
())
svd
.
m_matrixV
=
m_qr
.
colsPermutation
();
return
true
;
}
return
false
;
}
private:
typedef
ColPivHouseholderQR
<
MatrixType
>
QRType
;
QRType
m_qr
;
typename
internal
::
plain_col_type
<
MatrixType
>::
type
m_workspace
;
};
template
<
typename
MatrixType
>
class
qr_preconditioner_impl
<
MatrixType
,
ColPivHouseholderQRPreconditioner
,
PreconditionIfMoreColsThanRows
,
true
>
{
public:
typedef
typename
MatrixType
::
Index
Index
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
enum
{
RowsAtCompileTime
=
MatrixType
::
RowsAtCompileTime
,
ColsAtCompileTime
=
MatrixType
::
ColsAtCompileTime
,
MaxRowsAtCompileTime
=
MatrixType
::
MaxRowsAtCompileTime
,
MaxColsAtCompileTime
=
MatrixType
::
MaxColsAtCompileTime
,
Options
=
MatrixType
::
Options
};
typedef
Matrix
<
Scalar
,
ColsAtCompileTime
,
RowsAtCompileTime
,
Options
,
MaxColsAtCompileTime
,
MaxRowsAtCompileTime
>
TransposeTypeWithSameStorageOrder
;
void
allocate
(
const
JacobiSVD
<
MatrixType
,
ColPivHouseholderQRPreconditioner
>&
svd
)
{
if
(
svd
.
cols
()
!=
m_qr
.
rows
()
||
svd
.
rows
()
!=
m_qr
.
cols
())
{
m_qr
.
~
QRType
();
::
new
(
&
m_qr
)
QRType
(
svd
.
cols
(),
svd
.
rows
());
}
if
(
svd
.
m_computeFullV
)
m_workspace
.
resize
(
svd
.
cols
());
else
if
(
svd
.
m_computeThinV
)
m_workspace
.
resize
(
svd
.
rows
());
m_adjoint
.
resize
(
svd
.
cols
(),
svd
.
rows
());
}
bool
run
(
JacobiSVD
<
MatrixType
,
ColPivHouseholderQRPreconditioner
>&
svd
,
const
MatrixType
&
matrix
)
{
if
(
matrix
.
cols
()
>
matrix
.
rows
())
{
m_adjoint
=
matrix
.
adjoint
();
m_qr
.
compute
(
m_adjoint
);
svd
.
m_workMatrix
=
m_qr
.
matrixQR
().
block
(
0
,
0
,
matrix
.
rows
(),
matrix
.
rows
()).
template
triangularView
<
Upper
>
().
adjoint
();
if
(
svd
.
m_computeFullV
)
m_qr
.
householderQ
().
evalTo
(
svd
.
m_matrixV
,
m_workspace
);
else
if
(
svd
.
m_computeThinV
)
{
svd
.
m_matrixV
.
setIdentity
(
matrix
.
cols
(),
matrix
.
rows
());
m_qr
.
householderQ
().
applyThisOnTheLeft
(
svd
.
m_matrixV
,
m_workspace
);
}
if
(
svd
.
computeU
())
svd
.
m_matrixU
=
m_qr
.
colsPermutation
();
return
true
;
}
else
return
false
;
}
private:
typedef
ColPivHouseholderQR
<
TransposeTypeWithSameStorageOrder
>
QRType
;
QRType
m_qr
;
TransposeTypeWithSameStorageOrder
m_adjoint
;
typename
internal
::
plain_row_type
<
MatrixType
>::
type
m_workspace
;
};
/*** preconditioner using HouseholderQR ***/
template
<
typename
MatrixType
>
class
qr_preconditioner_impl
<
MatrixType
,
HouseholderQRPreconditioner
,
PreconditionIfMoreRowsThanCols
,
true
>
{
public:
typedef
typename
MatrixType
::
Index
Index
;
void
allocate
(
const
JacobiSVD
<
MatrixType
,
HouseholderQRPreconditioner
>&
svd
)
{
if
(
svd
.
rows
()
!=
m_qr
.
rows
()
||
svd
.
cols
()
!=
m_qr
.
cols
())
{
m_qr
.
~
QRType
();
::
new
(
&
m_qr
)
QRType
(
svd
.
rows
(),
svd
.
cols
());
}
if
(
svd
.
m_computeFullU
)
m_workspace
.
resize
(
svd
.
rows
());
else
if
(
svd
.
m_computeThinU
)
m_workspace
.
resize
(
svd
.
cols
());
}
bool
run
(
JacobiSVD
<
MatrixType
,
HouseholderQRPreconditioner
>&
svd
,
const
MatrixType
&
matrix
)
{
if
(
matrix
.
rows
()
>
matrix
.
cols
())
{
m_qr
.
compute
(
matrix
);
svd
.
m_workMatrix
=
m_qr
.
matrixQR
().
block
(
0
,
0
,
matrix
.
cols
(),
matrix
.
cols
()).
template
triangularView
<
Upper
>
();
if
(
svd
.
m_computeFullU
)
m_qr
.
householderQ
().
evalTo
(
svd
.
m_matrixU
,
m_workspace
);
else
if
(
svd
.
m_computeThinU
)
{
svd
.
m_matrixU
.
setIdentity
(
matrix
.
rows
(),
matrix
.
cols
());
m_qr
.
householderQ
().
applyThisOnTheLeft
(
svd
.
m_matrixU
,
m_workspace
);
}
if
(
svd
.
computeV
())
svd
.
m_matrixV
.
setIdentity
(
matrix
.
cols
(),
matrix
.
cols
());
return
true
;
}
return
false
;
}
private:
typedef
HouseholderQR
<
MatrixType
>
QRType
;
QRType
m_qr
;
typename
internal
::
plain_col_type
<
MatrixType
>::
type
m_workspace
;
};
template
<
typename
MatrixType
>
class
qr_preconditioner_impl
<
MatrixType
,
HouseholderQRPreconditioner
,
PreconditionIfMoreColsThanRows
,
true
>
{
public:
typedef
typename
MatrixType
::
Index
Index
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
enum
{
RowsAtCompileTime
=
MatrixType
::
RowsAtCompileTime
,
ColsAtCompileTime
=
MatrixType
::
ColsAtCompileTime
,
MaxRowsAtCompileTime
=
MatrixType
::
MaxRowsAtCompileTime
,
MaxColsAtCompileTime
=
MatrixType
::
MaxColsAtCompileTime
,
Options
=
MatrixType
::
Options
};
typedef
Matrix
<
Scalar
,
ColsAtCompileTime
,
RowsAtCompileTime
,
Options
,
MaxColsAtCompileTime
,
MaxRowsAtCompileTime
>
TransposeTypeWithSameStorageOrder
;
void
allocate
(
const
JacobiSVD
<
MatrixType
,
HouseholderQRPreconditioner
>&
svd
)
{
if
(
svd
.
cols
()
!=
m_qr
.
rows
()
||
svd
.
rows
()
!=
m_qr
.
cols
())
{
m_qr
.
~
QRType
();
::
new
(
&
m_qr
)
QRType
(
svd
.
cols
(),
svd
.
rows
());
}
if
(
svd
.
m_computeFullV
)
m_workspace
.
resize
(
svd
.
cols
());
else
if
(
svd
.
m_computeThinV
)
m_workspace
.
resize
(
svd
.
rows
());
m_adjoint
.
resize
(
svd
.
cols
(),
svd
.
rows
());
}
bool
run
(
JacobiSVD
<
MatrixType
,
HouseholderQRPreconditioner
>&
svd
,
const
MatrixType
&
matrix
)
{
if
(
matrix
.
cols
()
>
matrix
.
rows
())
{
m_adjoint
=
matrix
.
adjoint
();
m_qr
.
compute
(
m_adjoint
);
svd
.
m_workMatrix
=
m_qr
.
matrixQR
().
block
(
0
,
0
,
matrix
.
rows
(),
matrix
.
rows
()).
template
triangularView
<
Upper
>
().
adjoint
();
if
(
svd
.
m_computeFullV
)
m_qr
.
householderQ
().
evalTo
(
svd
.
m_matrixV
,
m_workspace
);
else
if
(
svd
.
m_computeThinV
)
{
svd
.
m_matrixV
.
setIdentity
(
matrix
.
cols
(),
matrix
.
rows
());
m_qr
.
householderQ
().
applyThisOnTheLeft
(
svd
.
m_matrixV
,
m_workspace
);
}
if
(
svd
.
computeU
())
svd
.
m_matrixU
.
setIdentity
(
matrix
.
rows
(),
matrix
.
rows
());
return
true
;
}
else
return
false
;
}
private:
typedef
HouseholderQR
<
TransposeTypeWithSameStorageOrder
>
QRType
;
QRType
m_qr
;
TransposeTypeWithSameStorageOrder
m_adjoint
;
typename
internal
::
plain_row_type
<
MatrixType
>::
type
m_workspace
;
};
/*** 2x2 SVD implementation
***
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
***/
template
<
typename
MatrixType
,
int
QRPreconditioner
>
struct
svd_precondition_2x2_block_to_be_real
<
MatrixType
,
QRPreconditioner
,
false
>
{
typedef
JacobiSVD
<
MatrixType
,
QRPreconditioner
>
SVD
;
typedef
typename
SVD
::
Index
Index
;
static
void
run
(
typename
SVD
::
WorkMatrixType
&
,
SVD
&
,
Index
,
Index
)
{}
};
template
<
typename
MatrixType
,
int
QRPreconditioner
>
struct
svd_precondition_2x2_block_to_be_real
<
MatrixType
,
QRPreconditioner
,
true
>
{
typedef
JacobiSVD
<
MatrixType
,
QRPreconditioner
>
SVD
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
typename
MatrixType
::
RealScalar
RealScalar
;
typedef
typename
SVD
::
Index
Index
;
static
void
run
(
typename
SVD
::
WorkMatrixType
&
work_matrix
,
SVD
&
svd
,
Index
p
,
Index
q
)
{
using
std
::
sqrt
;
Scalar
z
;
JacobiRotation
<
Scalar
>
rot
;
RealScalar
n
=
sqrt
(
numext
::
abs2
(
work_matrix
.
coeff
(
p
,
p
))
+
numext
::
abs2
(
work_matrix
.
coeff
(
q
,
p
)));
if
(
n
==
0
)
{
z
=
abs
(
work_matrix
.
coeff
(
p
,
q
))
/
work_matrix
.
coeff
(
p
,
q
);
work_matrix
.
row
(
p
)
*=
z
;
if
(
svd
.
computeU
())
svd
.
m_matrixU
.
col
(
p
)
*=
conj
(
z
);
if
(
work_matrix
.
coeff
(
q
,
q
)
!=
Scalar
(
0
))
{
z
=
abs
(
work_matrix
.
coeff
(
q
,
q
))
/
work_matrix
.
coeff
(
q
,
q
);
work_matrix
.
row
(
q
)
*=
z
;
if
(
svd
.
computeU
())
svd
.
m_matrixU
.
col
(
q
)
*=
conj
(
z
);
}
// otherwise the second row is already zero, so we have nothing to do.
}
else
{
rot
.
c
()
=
conj
(
work_matrix
.
coeff
(
p
,
p
))
/
n
;
rot
.
s
()
=
work_matrix
.
coeff
(
q
,
p
)
/
n
;
work_matrix
.
applyOnTheLeft
(
p
,
q
,
rot
);
if
(
svd
.
computeU
())
svd
.
m_matrixU
.
applyOnTheRight
(
p
,
q
,
rot
.
adjoint
());
if
(
work_matrix
.
coeff
(
p
,
q
)
!=
Scalar
(
0
))
{
Scalar
z
=
abs
(
work_matrix
.
coeff
(
p
,
q
))
/
work_matrix
.
coeff
(
p
,
q
);
work_matrix
.
col
(
q
)
*=
z
;
if
(
svd
.
computeV
())
svd
.
m_matrixV
.
col
(
q
)
*=
z
;
}
if
(
work_matrix
.
coeff
(
q
,
q
)
!=
Scalar
(
0
))
{
z
=
abs
(
work_matrix
.
coeff
(
q
,
q
))
/
work_matrix
.
coeff
(
q
,
q
);
work_matrix
.
row
(
q
)
*=
z
;
if
(
svd
.
computeU
())
svd
.
m_matrixU
.
col
(
q
)
*=
conj
(
z
);
}
}
}
};
template
<
typename
MatrixType
,
typename
RealScalar
,
typename
Index
>
void
real_2x2_jacobi_svd
(
const
MatrixType
&
matrix
,
Index
p
,
Index
q
,
JacobiRotation
<
RealScalar
>
*
j_left
,
JacobiRotation
<
RealScalar
>
*
j_right
)
{
using
std
::
sqrt
;
using
std
::
abs
;
Matrix
<
RealScalar
,
2
,
2
>
m
;
m
<<
numext
::
real
(
matrix
.
coeff
(
p
,
p
)),
numext
::
real
(
matrix
.
coeff
(
p
,
q
)),
numext
::
real
(
matrix
.
coeff
(
q
,
p
)),
numext
::
real
(
matrix
.
coeff
(
q
,
q
));
JacobiRotation
<
RealScalar
>
rot1
;
RealScalar
t
=
m
.
coeff
(
0
,
0
)
+
m
.
coeff
(
1
,
1
);
RealScalar
d
=
m
.
coeff
(
1
,
0
)
-
m
.
coeff
(
0
,
1
);
if
(
t
==
RealScalar
(
0
))
{
rot1
.
c
()
=
RealScalar
(
0
);
rot1
.
s
()
=
d
>
RealScalar
(
0
)
?
RealScalar
(
1
)
:
RealScalar
(
-
1
);
}
else
{
RealScalar
t2d2
=
numext
::
hypot
(
t
,
d
);
rot1
.
c
()
=
abs
(
t
)
/
t2d2
;
rot1
.
s
()
=
d
/
t2d2
;
if
(
t
<
RealScalar
(
0
))
rot1
.
s
()
=
-
rot1
.
s
();
}
m
.
applyOnTheLeft
(
0
,
1
,
rot1
);
j_right
->
makeJacobi
(
m
,
0
,
1
);
*
j_left
=
rot1
*
j_right
->
transpose
();
}
}
// end namespace internal
/** \ingroup SVD_Module
*
*
* \class JacobiSVD
*
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
* for the R-SVD step for non-square matrices. See discussion of possible values below.
*
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
* \f[ A = U S V^* \f]
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
* and right \em singular \em vectors of \a A respectively.
*
* Singular values are always sorted in decreasing order.
*
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
*
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
*
* Here's an example demonstrating basic usage:
* \include JacobiSVD_basic.cpp
* Output: \verbinclude JacobiSVD_basic.out
*
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
*
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
* terminate in finite (and reasonable) time.
*
* The possible values for QRPreconditioner are:
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
* Contrary to other QRs, it doesn't allow computing thin unitaries.
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
* process is more reliable than the optimized bidiagonal SVD iterations.
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
* if QR preconditioning is needed before applying it anyway.
*
* \sa MatrixBase::jacobiSvd()
*/
template
<
typename
_MatrixType
,
int
QRPreconditioner
>
class
JacobiSVD
{
public:
typedef
_MatrixType
MatrixType
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
typename
NumTraits
<
typename
MatrixType
::
Scalar
>::
Real
RealScalar
;
typedef
typename
MatrixType
::
Index
Index
;
enum
{
RowsAtCompileTime
=
MatrixType
::
RowsAtCompileTime
,
ColsAtCompileTime
=
MatrixType
::
ColsAtCompileTime
,
DiagSizeAtCompileTime
=
EIGEN_SIZE_MIN_PREFER_DYNAMIC
(
RowsAtCompileTime
,
ColsAtCompileTime
),
MaxRowsAtCompileTime
=
MatrixType
::
MaxRowsAtCompileTime
,
MaxColsAtCompileTime
=
MatrixType
::
MaxColsAtCompileTime
,
MaxDiagSizeAtCompileTime
=
EIGEN_SIZE_MIN_PREFER_FIXED
(
MaxRowsAtCompileTime
,
MaxColsAtCompileTime
),
MatrixOptions
=
MatrixType
::
Options
};
typedef
Matrix
<
Scalar
,
RowsAtCompileTime
,
RowsAtCompileTime
,
MatrixOptions
,
MaxRowsAtCompileTime
,
MaxRowsAtCompileTime
>
MatrixUType
;
typedef
Matrix
<
Scalar
,
ColsAtCompileTime
,
ColsAtCompileTime
,
MatrixOptions
,
MaxColsAtCompileTime
,
MaxColsAtCompileTime
>
MatrixVType
;
typedef
typename
internal
::
plain_diag_type
<
MatrixType
,
RealScalar
>::
type
SingularValuesType
;
typedef
typename
internal
::
plain_row_type
<
MatrixType
>::
type
RowType
;
typedef
typename
internal
::
plain_col_type
<
MatrixType
>::
type
ColType
;
typedef
Matrix
<
Scalar
,
DiagSizeAtCompileTime
,
DiagSizeAtCompileTime
,
MatrixOptions
,
MaxDiagSizeAtCompileTime
,
MaxDiagSizeAtCompileTime
>
WorkMatrixType
;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via JacobiSVD::compute(const MatrixType&).
*/
JacobiSVD
()
:
m_isInitialized
(
false
),
m_isAllocated
(
false
),
m_usePrescribedThreshold
(
false
),
m_computationOptions
(
0
),
m_rows
(
-
1
),
m_cols
(
-
1
),
m_diagSize
(
0
)
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem size.
* \sa JacobiSVD()
*/
JacobiSVD
(
Index
rows
,
Index
cols
,
unsigned
int
computationOptions
=
0
)
:
m_isInitialized
(
false
),
m_isAllocated
(
false
),
m_usePrescribedThreshold
(
false
),
m_computationOptions
(
0
),
m_rows
(
-
1
),
m_cols
(
-
1
)
{
allocate
(
rows
,
cols
,
computationOptions
);
}
/** \brief Constructor performing the decomposition of given matrix.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
JacobiSVD
(
const
MatrixType
&
matrix
,
unsigned
int
computationOptions
=
0
)
:
m_isInitialized
(
false
),
m_isAllocated
(
false
),
m_usePrescribedThreshold
(
false
),
m_computationOptions
(
0
),
m_rows
(
-
1
),
m_cols
(
-
1
)
{
compute
(
matrix
,
computationOptions
);
}
/** \brief Method performing the decomposition of given matrix using custom options.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
JacobiSVD
&
compute
(
const
MatrixType
&
matrix
,
unsigned
int
computationOptions
);
/** \brief Method performing the decomposition of given matrix using current options.
*
* \param matrix the matrix to decompose
*
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
*/
JacobiSVD
&
compute
(
const
MatrixType
&
matrix
)
{
return
compute
(
matrix
,
m_computationOptions
);
}
/** \returns the \a U matrix.
*
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
* the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
*
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
*
* This method asserts that you asked for \a U to be computed.
*/
const
MatrixUType
&
matrixU
()
const
{
eigen_assert
(
m_isInitialized
&&
"JacobiSVD is not initialized."
);
eigen_assert
(
computeU
()
&&
"This JacobiSVD decomposition didn't compute U. Did you ask for it?"
);
return
m_matrixU
;
}
/** \returns the \a V matrix.
*
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
* the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
*
* The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
*
* This method asserts that you asked for \a V to be computed.
*/
const
MatrixVType
&
matrixV
()
const
{
eigen_assert
(
m_isInitialized
&&
"JacobiSVD is not initialized."
);
eigen_assert
(
computeV
()
&&
"This JacobiSVD decomposition didn't compute V. Did you ask for it?"
);
return
m_matrixV
;
}
/** \returns the vector of singular values.
*
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
* returned vector has size \a m. Singular values are always sorted in decreasing order.
*/
const
SingularValuesType
&
singularValues
()
const
{
eigen_assert
(
m_isInitialized
&&
"JacobiSVD is not initialized."
);
return
m_singularValues
;
}
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
inline
bool
computeU
()
const
{
return
m_computeFullU
||
m_computeThinU
;
}
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
inline
bool
computeV
()
const
{
return
m_computeFullV
||
m_computeThinV
;
}
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
*
* \param b the right-hand-side of the equation to solve.
*
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
*
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
*/
template
<
typename
Rhs
>
inline
const
internal
::
solve_retval
<
JacobiSVD
,
Rhs
>
solve
(
const
MatrixBase
<
Rhs
>&
b
)
const
{
eigen_assert
(
m_isInitialized
&&
"JacobiSVD is not initialized."
);
eigen_assert
(
computeU
()
&&
computeV
()
&&
"JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."
);
return
internal
::
solve_retval
<
JacobiSVD
,
Rhs
>
(
*
this
,
b
.
derived
());
}
/** \returns the number of singular values that are not exactly 0 */
Index
nonzeroSingularValues
()
const
{
eigen_assert
(
m_isInitialized
&&
"JacobiSVD is not initialized."
);
return
m_nonzeroSingularValues
;
}
/** \returns the rank of the matrix of which \c *this is the SVD.
*
* \note This method has to determine which singular values should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline
Index
rank
()
const
{
using
std
::
abs
;
eigen_assert
(
m_isInitialized
&&
"JacobiSVD is not initialized."
);
if
(
m_singularValues
.
size
()
==
0
)
return
0
;
RealScalar
premultiplied_threshold
=
m_singularValues
.
coeff
(
0
)
*
threshold
();
Index
i
=
m_nonzeroSingularValues
-
1
;
while
(
i
>=
0
&&
m_singularValues
.
coeff
(
i
)
<
premultiplied_threshold
)
--
i
;
return
i
+
1
;
}
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
* which need to determine when singular values are to be considered nonzero.
* This is not used for the SVD decomposition itself.
*
* When it needs to get the threshold value, Eigen calls threshold().
* The default is \c NumTraits<Scalar>::epsilon()
*
* \param threshold The new value to use as the threshold.
*
* A singular value will be considered nonzero if its value is strictly greater than
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
*
* If you want to come back to the default behavior, call setThreshold(Default_t)
*/
JacobiSVD
&
setThreshold
(
const
RealScalar
&
threshold
)
{
m_usePrescribedThreshold
=
true
;
m_prescribedThreshold
=
threshold
;
return
*
this
;
}
/** Allows to come back to the default behavior, letting Eigen use its default formula for
* determining the threshold.
*
* You should pass the special object Eigen::Default as parameter here.
* \code svd.setThreshold(Eigen::Default); \endcode
*
* See the documentation of setThreshold(const RealScalar&).
*/
JacobiSVD
&
setThreshold
(
Default_t
)
{
m_usePrescribedThreshold
=
false
;
return
*
this
;
}
/** Returns the threshold that will be used by certain methods such as rank().
*
* See the documentation of setThreshold(const RealScalar&).
*/
RealScalar
threshold
()
const
{
eigen_assert
(
m_isInitialized
||
m_usePrescribedThreshold
);
return
m_usePrescribedThreshold
?
m_prescribedThreshold
:
(
std
::
max
<
Index
>
)(
1
,
m_diagSize
)
*
NumTraits
<
Scalar
>::
epsilon
();
}
inline
Index
rows
()
const
{
return
m_rows
;
}
inline
Index
cols
()
const
{
return
m_cols
;
}
private:
void
allocate
(
Index
rows
,
Index
cols
,
unsigned
int
computationOptions
);
static
void
check_template_parameters
()
{
EIGEN_STATIC_ASSERT_NON_INTEGER
(
Scalar
);
}
protected:
MatrixUType
m_matrixU
;
MatrixVType
m_matrixV
;
SingularValuesType
m_singularValues
;
WorkMatrixType
m_workMatrix
;
bool
m_isInitialized
,
m_isAllocated
,
m_usePrescribedThreshold
;
bool
m_computeFullU
,
m_computeThinU
;
bool
m_computeFullV
,
m_computeThinV
;
unsigned
int
m_computationOptions
;
Index
m_nonzeroSingularValues
,
m_rows
,
m_cols
,
m_diagSize
;
RealScalar
m_prescribedThreshold
;
template
<
typename
__MatrixType
,
int
_QRPreconditioner
,
bool
_IsComplex
>
friend
struct
internal
::
svd_precondition_2x2_block_to_be_real
;
template
<
typename
__MatrixType
,
int
_QRPreconditioner
,
int
_Case
,
bool
_DoAnything
>
friend
struct
internal
::
qr_preconditioner_impl
;
internal
::
qr_preconditioner_impl
<
MatrixType
,
QRPreconditioner
,
internal
::
PreconditionIfMoreColsThanRows
>
m_qr_precond_morecols
;
internal
::
qr_preconditioner_impl
<
MatrixType
,
QRPreconditioner
,
internal
::
PreconditionIfMoreRowsThanCols
>
m_qr_precond_morerows
;
MatrixType
m_scaledMatrix
;
};
template
<
typename
MatrixType
,
int
QRPreconditioner
>
void
JacobiSVD
<
MatrixType
,
QRPreconditioner
>::
allocate
(
Index
rows
,
Index
cols
,
unsigned
int
computationOptions
)
{
eigen_assert
(
rows
>=
0
&&
cols
>=
0
);
if
(
m_isAllocated
&&
rows
==
m_rows
&&
cols
==
m_cols
&&
computationOptions
==
m_computationOptions
)
{
return
;
}
m_rows
=
rows
;
m_cols
=
cols
;
m_isInitialized
=
false
;
m_isAllocated
=
true
;
m_computationOptions
=
computationOptions
;
m_computeFullU
=
(
computationOptions
&
ComputeFullU
)
!=
0
;
m_computeThinU
=
(
computationOptions
&
ComputeThinU
)
!=
0
;
m_computeFullV
=
(
computationOptions
&
ComputeFullV
)
!=
0
;
m_computeThinV
=
(
computationOptions
&
ComputeThinV
)
!=
0
;
eigen_assert
(
!
(
m_computeFullU
&&
m_computeThinU
)
&&
"JacobiSVD: you can't ask for both full and thin U"
);
eigen_assert
(
!
(
m_computeFullV
&&
m_computeThinV
)
&&
"JacobiSVD: you can't ask for both full and thin V"
);
eigen_assert
(
EIGEN_IMPLIES
(
m_computeThinU
||
m_computeThinV
,
MatrixType
::
ColsAtCompileTime
==
Dynamic
)
&&
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns."
);
if
(
QRPreconditioner
==
FullPivHouseholderQRPreconditioner
)
{
eigen_assert
(
!
(
m_computeThinU
||
m_computeThinV
)
&&
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
"Use the ColPivHouseholderQR preconditioner instead."
);
}
m_diagSize
=
(
std
::
min
)(
m_rows
,
m_cols
);
m_singularValues
.
resize
(
m_diagSize
);
if
(
RowsAtCompileTime
==
Dynamic
)
m_matrixU
.
resize
(
m_rows
,
m_computeFullU
?
m_rows
:
m_computeThinU
?
m_diagSize
:
0
);
if
(
ColsAtCompileTime
==
Dynamic
)
m_matrixV
.
resize
(
m_cols
,
m_computeFullV
?
m_cols
:
m_computeThinV
?
m_diagSize
:
0
);
m_workMatrix
.
resize
(
m_diagSize
,
m_diagSize
);
if
(
m_cols
>
m_rows
)
m_qr_precond_morecols
.
allocate
(
*
this
);
if
(
m_rows
>
m_cols
)
m_qr_precond_morerows
.
allocate
(
*
this
);
if
(
m_rows
!=
m_cols
)
m_scaledMatrix
.
resize
(
rows
,
cols
);
}
template
<
typename
MatrixType
,
int
QRPreconditioner
>
JacobiSVD
<
MatrixType
,
QRPreconditioner
>&
JacobiSVD
<
MatrixType
,
QRPreconditioner
>::
compute
(
const
MatrixType
&
matrix
,
unsigned
int
computationOptions
)
{
check_template_parameters
();
using
std
::
abs
;
allocate
(
matrix
.
rows
(),
matrix
.
cols
(),
computationOptions
);
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
// only worsening the precision of U and V as we accumulate more rotations
const
RealScalar
precision
=
RealScalar
(
2
)
*
NumTraits
<
Scalar
>::
epsilon
();
// limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
const
RealScalar
considerAsZero
=
RealScalar
(
2
)
*
std
::
numeric_limits
<
RealScalar
>::
denorm_min
();
// Scaling factor to reduce over/under-flows
RealScalar
scale
=
matrix
.
cwiseAbs
().
maxCoeff
();
if
(
scale
==
RealScalar
(
0
))
scale
=
RealScalar
(
1
);
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
if
(
m_rows
!=
m_cols
)
{
m_scaledMatrix
=
matrix
/
scale
;
m_qr_precond_morecols
.
run
(
*
this
,
m_scaledMatrix
);
m_qr_precond_morerows
.
run
(
*
this
,
m_scaledMatrix
);
}
else
{
m_workMatrix
=
matrix
.
block
(
0
,
0
,
m_diagSize
,
m_diagSize
)
/
scale
;
if
(
m_computeFullU
)
m_matrixU
.
setIdentity
(
m_rows
,
m_rows
);
if
(
m_computeThinU
)
m_matrixU
.
setIdentity
(
m_rows
,
m_diagSize
);
if
(
m_computeFullV
)
m_matrixV
.
setIdentity
(
m_cols
,
m_cols
);
if
(
m_computeThinV
)
m_matrixV
.
setIdentity
(
m_cols
,
m_diagSize
);
}
/*** step 2. The main Jacobi SVD iteration. ***/
bool
finished
=
false
;
while
(
!
finished
)
{
finished
=
true
;
// do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
for
(
Index
p
=
1
;
p
<
m_diagSize
;
++
p
)
{
for
(
Index
q
=
0
;
q
<
p
;
++
q
)
{
// if this 2x2 sub-matrix is not diagonal already...
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
using
std
::
max
;
RealScalar
threshold
=
(
max
)(
considerAsZero
,
precision
*
(
max
)(
abs
(
m_workMatrix
.
coeff
(
p
,
p
)),
abs
(
m_workMatrix
.
coeff
(
q
,
q
))));
// We compare both values to threshold instead of calling max to be robust to NaN (See bug 791)
if
(
abs
(
m_workMatrix
.
coeff
(
p
,
q
))
>
threshold
||
abs
(
m_workMatrix
.
coeff
(
q
,
p
))
>
threshold
)
{
finished
=
false
;
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
internal
::
svd_precondition_2x2_block_to_be_real
<
MatrixType
,
QRPreconditioner
>::
run
(
m_workMatrix
,
*
this
,
p
,
q
);
JacobiRotation
<
RealScalar
>
j_left
,
j_right
;
internal
::
real_2x2_jacobi_svd
(
m_workMatrix
,
p
,
q
,
&
j_left
,
&
j_right
);
// accumulate resulting Jacobi rotations
m_workMatrix
.
applyOnTheLeft
(
p
,
q
,
j_left
);
if
(
computeU
())
m_matrixU
.
applyOnTheRight
(
p
,
q
,
j_left
.
transpose
());
m_workMatrix
.
applyOnTheRight
(
p
,
q
,
j_right
);
if
(
computeV
())
m_matrixV
.
applyOnTheRight
(
p
,
q
,
j_right
);
}
}
}
}
/*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
for
(
Index
i
=
0
;
i
<
m_diagSize
;
++
i
)
{
RealScalar
a
=
abs
(
m_workMatrix
.
coeff
(
i
,
i
));
m_singularValues
.
coeffRef
(
i
)
=
a
;
if
(
computeU
()
&&
(
a
!=
RealScalar
(
0
)))
m_matrixU
.
col
(
i
)
*=
m_workMatrix
.
coeff
(
i
,
i
)
/
a
;
}
/*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
m_nonzeroSingularValues
=
m_diagSize
;
for
(
Index
i
=
0
;
i
<
m_diagSize
;
i
++
)
{
Index
pos
;
RealScalar
maxRemainingSingularValue
=
m_singularValues
.
tail
(
m_diagSize
-
i
).
maxCoeff
(
&
pos
);
if
(
maxRemainingSingularValue
==
RealScalar
(
0
))
{
m_nonzeroSingularValues
=
i
;
break
;
}
if
(
pos
)
{
pos
+=
i
;
std
::
swap
(
m_singularValues
.
coeffRef
(
i
),
m_singularValues
.
coeffRef
(
pos
));
if
(
computeU
())
m_matrixU
.
col
(
pos
).
swap
(
m_matrixU
.
col
(
i
));
if
(
computeV
())
m_matrixV
.
col
(
pos
).
swap
(
m_matrixV
.
col
(
i
));
}
}
m_singularValues
*=
scale
;
m_isInitialized
=
true
;
return
*
this
;
}
namespace
internal
{
template
<
typename
_MatrixType
,
int
QRPreconditioner
,
typename
Rhs
>
struct
solve_retval
<
JacobiSVD
<
_MatrixType
,
QRPreconditioner
>
,
Rhs
>
:
solve_retval_base
<
JacobiSVD
<
_MatrixType
,
QRPreconditioner
>
,
Rhs
>
{
typedef
JacobiSVD
<
_MatrixType
,
QRPreconditioner
>
JacobiSVDType
;
EIGEN_MAKE_SOLVE_HELPERS
(
JacobiSVDType
,
Rhs
)
template
<
typename
Dest
>
void
evalTo
(
Dest
&
dst
)
const
{
eigen_assert
(
rhs
().
rows
()
==
dec
().
rows
());
// A = U S V^*
// So A^{-1} = V S^{-1} U^*
Matrix
<
Scalar
,
Dynamic
,
Rhs
::
ColsAtCompileTime
,
0
,
_MatrixType
::
MaxRowsAtCompileTime
,
Rhs
::
MaxColsAtCompileTime
>
tmp
;
Index
rank
=
dec
().
rank
();
tmp
.
noalias
()
=
dec
().
matrixU
().
leftCols
(
rank
).
adjoint
()
*
rhs
();
tmp
=
dec
().
singularValues
().
head
(
rank
).
asDiagonal
().
inverse
()
*
tmp
;
dst
=
dec
().
matrixV
().
leftCols
(
rank
)
*
tmp
;
}
};
}
// end namespace internal
/** \svd_module
*
* \return the singular value decomposition of \c *this computed by two-sided
* Jacobi transformations.
*
* \sa class JacobiSVD
*/
template
<
typename
Derived
>
JacobiSVD
<
typename
MatrixBase
<
Derived
>::
PlainObject
>
MatrixBase
<
Derived
>::
jacobiSvd
(
unsigned
int
computationOptions
)
const
{
return
JacobiSVD
<
PlainObject
>
(
*
this
,
computationOptions
);
}
}
// end namespace Eigen
#endif
// EIGEN_JACOBISVD_H
Event Timeline
Log In to Comment