Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90470469
pair_lj_long_coul_long.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 23:44
Size
34 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 23:44 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22082370
Attached To
rLAMMPS lammps
pair_lj_long_coul_long.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Pieter J. in 't Veld (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "math_vector.h"
#include "pair_lj_long_coul_long.h"
#include "atom.h"
#include "comm.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "force.h"
#include "kspace.h"
#include "update.h"
#include "integrate.h"
#include "respa.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define EWALD_F 1.12837917
#define EWALD_P 0.3275911
#define A1 0.254829592
#define A2 -0.284496736
#define A3 1.421413741
#define A4 -1.453152027
#define A5 1.061405429
/* ---------------------------------------------------------------------- */
PairLJLongCoulLong
::
PairLJLongCoulLong
(
LAMMPS
*
lmp
)
:
Pair
(
lmp
)
{
dispersionflag
=
ewaldflag
=
pppmflag
=
1
;
respa_enable
=
1
;
ftable
=
NULL
;
qdist
=
0.0
;
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
#define PAIR_ILLEGAL "Illegal pair_style lj/coul command"
#define PAIR_CUTOFF "Only one cut-off allowed when requesting all long"
#define PAIR_MISSING "Cut-offs missing in pair_style lj/coul"
#define PAIR_COUL_CUT "Coulombic cut not supported in pair_style lj/coul"
#define PAIR_LARGEST "Using largest cut-off for lj/coul long long"
#define PAIR_MIX "Mixing forced for lj coefficients"
void
PairLJLongCoulLong
::
options
(
char
**
arg
,
int
order
)
{
const
char
*
option
[]
=
{
"long"
,
"cut"
,
"off"
,
NULL
};
int
i
;
if
(
!*
arg
)
error
->
all
(
FLERR
,
PAIR_ILLEGAL
);
for
(
i
=
0
;
option
[
i
]
&&
strcmp
(
arg
[
0
],
option
[
i
]);
++
i
);
switch
(
i
)
{
default
:
error
->
all
(
FLERR
,
PAIR_ILLEGAL
);
case
0
:
ewald_order
|=
1
<<
order
;
break
;
case
2
:
ewald_off
|=
1
<<
order
;
case
1
:
break
;
}
}
void
PairLJLongCoulLong
::
settings
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
3
&&
narg
!=
4
)
error
->
all
(
FLERR
,
"Illegal pair_style command"
);
ewald_off
=
0
;
ewald_order
=
0
;
options
(
arg
,
6
);
options
(
++
arg
,
1
);
if
(
!
comm
->
me
&&
ewald_order
&
(
1
<<
6
))
error
->
warning
(
FLERR
,
PAIR_MIX
);
if
(
!
comm
->
me
&&
ewald_order
==
((
1
<<
1
)
|
(
1
<<
6
)))
error
->
warning
(
FLERR
,
PAIR_LARGEST
);
if
(
!*
(
++
arg
))
error
->
all
(
FLERR
,
PAIR_MISSING
);
if
(
!
((
ewald_order
^
ewald_off
)
&
(
1
<<
1
)))
error
->
all
(
FLERR
,
PAIR_COUL_CUT
);
cut_lj_global
=
force
->
numeric
(
*
(
arg
++
));
if
(
*
arg
&&
(
ewald_order
&
0x42
==
0x42
))
error
->
all
(
FLERR
,
PAIR_CUTOFF
);
if
(
narg
==
4
)
cut_coul
=
force
->
numeric
(
*
arg
);
else
cut_coul
=
cut_lj_global
;
if
(
allocated
)
{
// reset explicit cuts
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
+
1
;
j
<=
atom
->
ntypes
;
j
++
)
if
(
setflag
[
i
][
j
])
cut_lj
[
i
][
j
]
=
cut_lj_global
;
}
}
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
PairLJLongCoulLong
::~
PairLJLongCoulLong
()
{
if
(
allocated
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
cutsq
);
memory
->
destroy
(
cut_lj_read
);
memory
->
destroy
(
cut_lj
);
memory
->
destroy
(
cut_ljsq
);
memory
->
destroy
(
epsilon_read
);
memory
->
destroy
(
epsilon
);
memory
->
destroy
(
sigma_read
);
memory
->
destroy
(
sigma
);
memory
->
destroy
(
lj1
);
memory
->
destroy
(
lj2
);
memory
->
destroy
(
lj3
);
memory
->
destroy
(
lj4
);
memory
->
destroy
(
offset
);
}
if
(
ftable
)
free_tables
();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ntypes
;
memory
->
create
(
setflag
,
n
+
1
,
n
+
1
,
"pair:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
for
(
int
j
=
i
;
j
<=
n
;
j
++
)
setflag
[
i
][
j
]
=
0
;
memory
->
create
(
cutsq
,
n
+
1
,
n
+
1
,
"pair:cutsq"
);
memory
->
create
(
cut_lj_read
,
n
+
1
,
n
+
1
,
"pair:cut_lj_read"
);
memory
->
create
(
cut_lj
,
n
+
1
,
n
+
1
,
"pair:cut_lj"
);
memory
->
create
(
cut_ljsq
,
n
+
1
,
n
+
1
,
"pair:cut_ljsq"
);
memory
->
create
(
epsilon_read
,
n
+
1
,
n
+
1
,
"pair:epsilon_read"
);
memory
->
create
(
epsilon
,
n
+
1
,
n
+
1
,
"pair:epsilon"
);
memory
->
create
(
sigma_read
,
n
+
1
,
n
+
1
,
"pair:sigma_read"
);
memory
->
create
(
sigma
,
n
+
1
,
n
+
1
,
"pair:sigma"
);
memory
->
create
(
lj1
,
n
+
1
,
n
+
1
,
"pair:lj1"
);
memory
->
create
(
lj2
,
n
+
1
,
n
+
1
,
"pair:lj2"
);
memory
->
create
(
lj3
,
n
+
1
,
n
+
1
,
"pair:lj3"
);
memory
->
create
(
lj4
,
n
+
1
,
n
+
1
,
"pair:lj4"
);
memory
->
create
(
offset
,
n
+
1
,
n
+
1
,
"pair:offset"
);
}
/* ----------------------------------------------------------------------
extract protected data from object
------------------------------------------------------------------------- */
void
*
PairLJLongCoulLong
::
extract
(
const
char
*
id
,
int
&
dim
)
{
const
char
*
ids
[]
=
{
"B"
,
"sigma"
,
"epsilon"
,
"ewald_order"
,
"ewald_cut"
,
"ewald_mix"
,
"cut_coul"
,
"cut_LJ"
,
NULL
};
void
*
ptrs
[]
=
{
lj4
,
sigma
,
epsilon
,
&
ewald_order
,
&
cut_coul
,
&
mix_flag
,
&
cut_coul
,
&
cut_lj_global
,
NULL
};
int
i
;
for
(
i
=
0
;
ids
[
i
]
&&
strcmp
(
ids
[
i
],
id
);
++
i
);
if
(
i
<=
2
)
dim
=
2
;
else
dim
=
0
;
return
ptrs
[
i
];
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
<
4
||
narg
>
5
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
,
jlo
,
jhi
;
force
->
bounds
(
arg
[
0
],
atom
->
ntypes
,
ilo
,
ihi
);
force
->
bounds
(
arg
[
1
],
atom
->
ntypes
,
jlo
,
jhi
);
double
epsilon_one
=
force
->
numeric
(
arg
[
2
]);
double
sigma_one
=
force
->
numeric
(
arg
[
3
]);
double
cut_lj_one
=
cut_lj_global
;
if
(
narg
==
5
)
cut_lj_one
=
force
->
numeric
(
arg
[
4
]);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
for
(
int
j
=
MAX
(
jlo
,
i
);
j
<=
jhi
;
j
++
)
{
epsilon_read
[
i
][
j
]
=
epsilon_one
;
sigma_read
[
i
][
j
]
=
sigma_one
;
cut_lj_read
[
i
][
j
]
=
cut_lj_one
;
setflag
[
i
][
j
]
=
1
;
count
++
;
}
}
if
(
count
==
0
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
init_style
()
{
const
char
*
style1
[]
=
{
"ewald"
,
"ewald/n"
,
"pppm"
,
"pppm_disp"
,
"pppm_disp/tip4p"
,
NULL
};
const
char
*
style6
[]
=
{
"ewald/n"
,
"pppm_disp"
,
"pppm_disp/tip4p"
,
NULL
};
int
i
;
// require an atom style with charge defined
if
(
!
atom
->
q_flag
&&
(
ewald_order
&
(
1
<<
1
)))
error
->
all
(
FLERR
,
"Invoking coulombic in pair style lj/coul requires atom attribute q"
);
// request regular or rRESPA neighbor lists
int
irequest
;
if
(
update
->
whichflag
==
0
&&
strstr
(
update
->
integrate_style
,
"respa"
))
{
int
respa
=
0
;
if
(((
Respa
*
)
update
->
integrate
)
->
level_inner
>=
0
)
respa
=
1
;
if
(((
Respa
*
)
update
->
integrate
)
->
level_middle
>=
0
)
respa
=
2
;
if
(
respa
==
0
)
irequest
=
neighbor
->
request
(
this
);
else
if
(
respa
==
1
)
{
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
1
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respainner
=
1
;
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
3
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respaouter
=
1
;
}
else
{
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
1
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respainner
=
1
;
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
2
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respamiddle
=
1
;
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
3
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respaouter
=
1
;
}
}
else
irequest
=
neighbor
->
request
(
this
);
cut_coulsq
=
cut_coul
*
cut_coul
;
// set rRESPA cutoffs
if
(
strstr
(
update
->
integrate_style
,
"respa"
)
&&
((
Respa
*
)
update
->
integrate
)
->
level_inner
>=
0
)
cut_respa
=
((
Respa
*
)
update
->
integrate
)
->
cutoff
;
else
cut_respa
=
NULL
;
// ensure use of KSpace long-range solver, set g_ewald
if
(
force
->
kspace
==
NULL
)
error
->
all
(
FLERR
,
"Pair style requires a KSpace style"
);
if
(
force
->
kspace
)
g_ewald
=
force
->
kspace
->
g_ewald
;
if
(
force
->
kspace
)
g_ewald_6
=
force
->
kspace
->
g_ewald_6
;
// setup force tables
if
(
ncoultablebits
)
init_tables
(
cut_coul
,
cut_respa
);
}
/* ----------------------------------------------------------------------
neighbor callback to inform pair style of neighbor list to use
regular or rRESPA
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
init_list
(
int
id
,
NeighList
*
ptr
)
{
if
(
id
==
0
)
list
=
ptr
;
else
if
(
id
==
1
)
listinner
=
ptr
;
else
if
(
id
==
2
)
listmiddle
=
ptr
;
else
if
(
id
==
3
)
listouter
=
ptr
;
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double
PairLJLongCoulLong
::
init_one
(
int
i
,
int
j
)
{
if
((
ewald_order
&
(
1
<<
6
))
||
(
setflag
[
i
][
j
]
==
0
))
{
epsilon
[
i
][
j
]
=
mix_energy
(
epsilon_read
[
i
][
i
],
epsilon_read
[
j
][
j
],
sigma_read
[
i
][
i
],
sigma_read
[
j
][
j
]);
sigma
[
i
][
j
]
=
mix_distance
(
sigma_read
[
i
][
i
],
sigma_read
[
j
][
j
]);
if
(
ewald_order
&
(
1
<<
6
))
cut_lj
[
i
][
j
]
=
cut_lj_global
;
else
cut_lj
[
i
][
j
]
=
mix_distance
(
cut_lj_read
[
i
][
i
],
cut_lj_read
[
j
][
j
]);
}
else
{
sigma
[
i
][
j
]
=
sigma_read
[
i
][
j
];
epsilon
[
i
][
j
]
=
epsilon_read
[
i
][
j
];
cut_lj
[
i
][
j
]
=
cut_lj_read
[
i
][
j
];
}
double
cut
=
MAX
(
cut_lj
[
i
][
j
],
cut_coul
+
2.0
*
qdist
);
cutsq
[
i
][
j
]
=
cut
*
cut
;
cut_ljsq
[
i
][
j
]
=
cut_lj
[
i
][
j
]
*
cut_lj
[
i
][
j
];
lj1
[
i
][
j
]
=
48.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
12.0
);
lj2
[
i
][
j
]
=
24.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
6.0
);
lj3
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
12.0
);
lj4
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
6.0
);
// check interior rRESPA cutoff
if
(
cut_respa
&&
MIN
(
cut_lj
[
i
][
j
],
cut_coul
)
<
cut_respa
[
3
])
error
->
all
(
FLERR
,
"Pair cutoff < Respa interior cutoff"
);
if
(
offset_flag
)
{
double
ratio
=
sigma
[
i
][
j
]
/
cut_lj
[
i
][
j
];
offset
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
(
pow
(
ratio
,
12.0
)
-
pow
(
ratio
,
6.0
));
}
else
offset
[
i
][
j
]
=
0.0
;
cutsq
[
j
][
i
]
=
cutsq
[
i
][
j
];
cut_ljsq
[
j
][
i
]
=
cut_ljsq
[
i
][
j
];
lj1
[
j
][
i
]
=
lj1
[
i
][
j
];
lj2
[
j
][
i
]
=
lj2
[
i
][
j
];
lj3
[
j
][
i
]
=
lj3
[
i
][
j
];
lj4
[
j
][
i
]
=
lj4
[
i
][
j
];
offset
[
j
][
i
]
=
offset
[
i
][
j
];
return
cut
;
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
write_restart
(
FILE
*
fp
)
{
write_restart_settings
(
fp
);
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
fwrite
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
if
(
setflag
[
i
][
j
])
{
fwrite
(
&
epsilon_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
sigma_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
cut_lj_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
read_restart
(
FILE
*
fp
)
{
read_restart_settings
(
fp
);
allocate
();
int
i
,
j
;
int
me
=
comm
->
me
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
if
(
me
==
0
)
fread
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
MPI_Bcast
(
&
setflag
[
i
][
j
],
1
,
MPI_INT
,
0
,
world
);
if
(
setflag
[
i
][
j
])
{
if
(
me
==
0
)
{
fread
(
&
epsilon_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
sigma_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
cut_lj_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
MPI_Bcast
(
&
epsilon_read
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
sigma_read
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
cut_lj_read
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
write_restart_settings
(
FILE
*
fp
)
{
fwrite
(
&
cut_lj_global
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
cut_coul
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fwrite
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
fwrite
(
&
ncoultablebits
,
sizeof
(
int
),
1
,
fp
);
fwrite
(
&
tabinner
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
ewald_order
,
sizeof
(
int
),
1
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
read_restart_settings
(
FILE
*
fp
)
{
if
(
comm
->
me
==
0
)
{
fread
(
&
cut_lj_global
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
cut_coul
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fread
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
fread
(
&
ncoultablebits
,
sizeof
(
int
),
1
,
fp
);
fread
(
&
tabinner
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
ewald_order
,
sizeof
(
int
),
1
,
fp
);
}
MPI_Bcast
(
&
cut_lj_global
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
cut_coul
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
offset_flag
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
&
mix_flag
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
&
ncoultablebits
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
&
tabinner
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ewald_order
,
1
,
MPI_INT
,
0
,
world
);
}
/* ----------------------------------------------------------------------
compute pair interactions
------------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
compute
(
int
eflag
,
int
vflag
)
{
double
evdwl
,
ecoul
,
fpair
;
evdwl
=
ecoul
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
vflag_fdotr
=
0
;
double
**
x
=
atom
->
x
,
*
x0
=
x
[
0
];
double
**
f
=
atom
->
f
,
*
f0
=
f
[
0
],
*
fi
=
f0
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
int
i
,
j
,
order1
=
ewald_order
&
(
1
<<
1
),
order6
=
ewald_order
&
(
1
<<
6
);
int
*
ineigh
,
*
ineighn
,
*
jneigh
,
*
jneighn
,
typei
,
typej
,
ni
;
double
qi
=
0.0
,
qri
=
0.0
;
double
*
cutsqi
,
*
cut_ljsqi
,
*
lj1i
,
*
lj2i
,
*
lj3i
,
*
lj4i
,
*
offseti
;
double
rsq
,
r2inv
,
force_coul
,
force_lj
;
double
g2
=
g_ewald_6
*
g_ewald_6
,
g6
=
g2
*
g2
*
g2
,
g8
=
g6
*
g2
;
vector
xi
,
d
;
ineighn
=
(
ineigh
=
list
->
ilist
)
+
list
->
inum
;
for
(;
ineigh
<
ineighn
;
++
ineigh
)
{
// loop over my atoms
i
=
*
ineigh
;
fi
=
f0
+
3
*
i
;
if
(
order1
)
qri
=
(
qi
=
q
[
i
])
*
qqrd2e
;
// initialize constants
offseti
=
offset
[
typei
=
type
[
i
]];
lj1i
=
lj1
[
typei
];
lj2i
=
lj2
[
typei
];
lj3i
=
lj3
[
typei
];
lj4i
=
lj4
[
typei
];
cutsqi
=
cutsq
[
typei
];
cut_ljsqi
=
cut_ljsq
[
typei
];
memcpy
(
xi
,
x0
+
(
i
+
(
i
<<
1
)),
sizeof
(
vector
));
jneighn
=
(
jneigh
=
list
->
firstneigh
[
i
])
+
list
->
numneigh
[
i
];
for
(;
jneigh
<
jneighn
;
++
jneigh
)
{
// loop over neighbors
j
=
*
jneigh
;
ni
=
sbmask
(
j
);
j
&=
NEIGHMASK
;
{
register
double
*
xj
=
x0
+
(
j
+
(
j
<<
1
));
d
[
0
]
=
xi
[
0
]
-
xj
[
0
];
// pair vector
d
[
1
]
=
xi
[
1
]
-
xj
[
1
];
d
[
2
]
=
xi
[
2
]
-
xj
[
2
];
}
if
((
rsq
=
vec_dot
(
d
,
d
))
>=
cutsqi
[
typej
=
type
[
j
]])
continue
;
r2inv
=
1.0
/
rsq
;
if
(
order1
&&
(
rsq
<
cut_coulsq
))
{
// coulombic
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
// series real space
register
double
r
=
sqrt
(
rsq
),
x
=
g_ewald
*
r
;
register
double
s
=
qri
*
q
[
j
],
t
=
1.0
/
(
1.0
+
EWALD_P
*
x
);
if
(
ni
==
0
)
{
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
;
if
(
eflag
)
ecoul
=
t
;
}
else
{
// special case
r
=
s
*
(
1.0
-
special_coul
[
ni
])
/
r
;
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
-
r
;
if
(
eflag
)
ecoul
=
t
-
r
;
}
}
// table real space
else
{
register
union_int_float_t
t
;
t
.
f
=
rsq
;
register
const
int
k
=
(
t
.
i
&
ncoulmask
)
>>
ncoulshiftbits
;
register
double
f
=
(
rsq
-
rtable
[
k
])
*
drtable
[
k
],
qiqj
=
qi
*
q
[
j
];
if
(
ni
==
0
)
{
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]);
if
(
eflag
)
ecoul
=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]);
}
else
{
// special case
t
.
f
=
(
1.0
-
special_coul
[
ni
])
*
(
ctable
[
k
]
+
f
*
dctable
[
k
]);
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]
-
t
.
f
);
if
(
eflag
)
ecoul
=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]
-
t
.
f
);
}
}
}
else
force_coul
=
ecoul
=
0.0
;
if
(
rsq
<
cut_ljsqi
[
typej
])
{
// lj
if
(
order6
)
{
// long-range lj
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
register
double
x2
=
g2
*
rsq
,
a2
=
1.0
/
x2
;
x2
=
a2
*
exp
(
-
x2
)
*
lj4i
[
typej
];
if
(
ni
==
0
)
{
force_lj
=
(
rn
*=
rn
)
*
lj1i
[
typej
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
1.0
)
*
x2
*
rsq
;
if
(
eflag
)
evdwl
=
rn
*
lj3i
[
typej
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
;
}
else
{
// special case
register
double
f
=
special_lj
[
ni
],
t
=
rn
*
(
1.0
-
f
);
force_lj
=
f
*
(
rn
*=
rn
)
*
lj1i
[
typej
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
1.0
)
*
x2
*
rsq
+
t
*
lj2i
[
typej
];
if
(
eflag
)
evdwl
=
f
*
rn
*
lj3i
[
typej
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
+
t
*
lj4i
[
typej
];
}
}
else
{
// cut lj
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
if
(
ni
==
0
)
{
force_lj
=
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
]);
if
(
eflag
)
evdwl
=
rn
*
(
rn
*
lj3i
[
typej
]
-
lj4i
[
typej
])
-
offseti
[
typej
];
}
else
{
// special case
register
double
f
=
special_lj
[
ni
];
force_lj
=
f
*
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
]);
if
(
eflag
)
evdwl
=
f
*
(
rn
*
(
rn
*
lj3i
[
typej
]
-
lj4i
[
typej
])
-
offseti
[
typej
]);
}
}
}
else
force_lj
=
evdwl
=
0.0
;
fpair
=
(
force_coul
+
force_lj
)
*
r2inv
;
if
(
newton_pair
||
j
<
nlocal
)
{
register
double
*
fj
=
f0
+
(
j
+
(
j
<<
1
)),
f
;
fi
[
0
]
+=
f
=
d
[
0
]
*
fpair
;
fj
[
0
]
-=
f
;
fi
[
1
]
+=
f
=
d
[
1
]
*
fpair
;
fj
[
1
]
-=
f
;
fi
[
2
]
+=
f
=
d
[
2
]
*
fpair
;
fj
[
2
]
-=
f
;
}
else
{
fi
[
0
]
+=
d
[
0
]
*
fpair
;
fi
[
1
]
+=
d
[
1
]
*
fpair
;
fi
[
2
]
+=
d
[
2
]
*
fpair
;
}
if
(
evflag
)
ev_tally
(
i
,
j
,
nlocal
,
newton_pair
,
evdwl
,
ecoul
,
fpair
,
d
[
0
],
d
[
1
],
d
[
2
]);
}
}
if
(
vflag_fdotr
)
virial_fdotr_compute
();
}
/* ---------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
compute_inner
()
{
double
rsq
,
r2inv
,
force_coul
=
0.0
,
force_lj
,
fpair
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
x0
=
atom
->
x
[
0
],
*
f0
=
atom
->
f
[
0
],
*
fi
=
f0
,
*
q
=
atom
->
q
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
double
cut_out_on
=
cut_respa
[
0
];
double
cut_out_off
=
cut_respa
[
1
];
double
cut_out_diff
=
cut_out_off
-
cut_out_on
;
double
cut_out_on_sq
=
cut_out_on
*
cut_out_on
;
double
cut_out_off_sq
=
cut_out_off
*
cut_out_off
;
int
*
ineigh
,
*
ineighn
,
*
jneigh
,
*
jneighn
,
typei
,
typej
,
ni
;
int
i
,
j
,
order1
=
(
ewald_order
|
(
ewald_off
^-
1
))
&
(
1
<<
1
);
double
qri
,
*
cut_ljsqi
,
*
lj1i
,
*
lj2i
;
vector
xi
,
d
;
ineighn
=
(
ineigh
=
list
->
ilist
)
+
list
->
inum
;
for
(;
ineigh
<
ineighn
;
++
ineigh
)
{
// loop over my atoms
i
=
*
ineigh
;
fi
=
f0
+
3
*
i
;
qri
=
qqrd2e
*
q
[
i
];
memcpy
(
xi
,
x0
+
(
i
+
(
i
<<
1
)),
sizeof
(
vector
));
cut_ljsqi
=
cut_ljsq
[
typei
=
type
[
i
]];
lj1i
=
lj1
[
typei
];
lj2i
=
lj2
[
typei
];
jneighn
=
(
jneigh
=
list
->
firstneigh
[
i
])
+
list
->
numneigh
[
i
];
for
(;
jneigh
<
jneighn
;
++
jneigh
)
{
// loop over neighbors
j
=
*
jneigh
;
ni
=
sbmask
(
j
);
j
&=
NEIGHMASK
;
{
register
double
*
xj
=
x0
+
(
j
+
(
j
<<
1
));
d
[
0
]
=
xi
[
0
]
-
xj
[
0
];
// pair vector
d
[
1
]
=
xi
[
1
]
-
xj
[
1
];
d
[
2
]
=
xi
[
2
]
-
xj
[
2
];
}
if
((
rsq
=
vec_dot
(
d
,
d
))
>=
cut_out_off_sq
)
continue
;
r2inv
=
1.0
/
rsq
;
if
(
order1
&&
(
rsq
<
cut_coulsq
))
// coulombic
force_coul
=
ni
==
0
?
qri
*
q
[
j
]
*
sqrt
(
r2inv
)
:
qri
*
q
[
j
]
*
sqrt
(
r2inv
)
*
special_coul
[
ni
];
if
(
rsq
<
cut_ljsqi
[
typej
=
type
[
j
]])
{
// lennard-jones
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
force_lj
=
ni
==
0
?
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
:
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
*
special_lj
[
ni
];
}
else
force_lj
=
0.0
;
fpair
=
(
force_coul
+
force_lj
)
*
r2inv
;
if
(
rsq
>
cut_out_on_sq
)
{
// switching
register
double
rsw
=
(
sqrt
(
rsq
)
-
cut_out_on
)
/
cut_out_diff
;
fpair
*=
1.0
+
rsw
*
rsw
*
(
2.0
*
rsw
-
3.0
);
}
if
(
newton_pair
||
j
<
nlocal
)
{
// force update
register
double
*
fj
=
f0
+
(
j
+
(
j
<<
1
)),
f
;
fi
[
0
]
+=
f
=
d
[
0
]
*
fpair
;
fj
[
0
]
-=
f
;
fi
[
1
]
+=
f
=
d
[
1
]
*
fpair
;
fj
[
1
]
-=
f
;
fi
[
2
]
+=
f
=
d
[
2
]
*
fpair
;
fj
[
2
]
-=
f
;
}
else
{
fi
[
0
]
+=
d
[
0
]
*
fpair
;
fi
[
1
]
+=
d
[
1
]
*
fpair
;
fi
[
2
]
+=
d
[
2
]
*
fpair
;
}
}
}
}
/* ---------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
compute_middle
()
{
double
rsq
,
r2inv
,
force_coul
=
0.0
,
force_lj
,
fpair
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
x0
=
atom
->
x
[
0
],
*
f0
=
atom
->
f
[
0
],
*
fi
=
f0
,
*
q
=
atom
->
q
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
double
cut_in_off
=
cut_respa
[
0
];
double
cut_in_on
=
cut_respa
[
1
];
double
cut_out_on
=
cut_respa
[
2
];
double
cut_out_off
=
cut_respa
[
3
];
double
cut_in_diff
=
cut_in_on
-
cut_in_off
;
double
cut_out_diff
=
cut_out_off
-
cut_out_on
;
double
cut_in_off_sq
=
cut_in_off
*
cut_in_off
;
double
cut_in_on_sq
=
cut_in_on
*
cut_in_on
;
double
cut_out_on_sq
=
cut_out_on
*
cut_out_on
;
double
cut_out_off_sq
=
cut_out_off
*
cut_out_off
;
int
*
ineigh
,
*
ineighn
,
*
jneigh
,
*
jneighn
,
typei
,
typej
,
ni
;
int
i
,
j
,
order1
=
(
ewald_order
|
(
ewald_off
^-
1
))
&
(
1
<<
1
);
double
qri
,
*
cut_ljsqi
,
*
lj1i
,
*
lj2i
;
vector
xi
,
d
;
ineighn
=
(
ineigh
=
list
->
ilist
)
+
list
->
inum
;
for
(;
ineigh
<
ineighn
;
++
ineigh
)
{
// loop over my atoms
i
=
*
ineigh
;
fi
=
f0
+
3
*
i
;
qri
=
qqrd2e
*
q
[
i
];
memcpy
(
xi
,
x0
+
(
i
+
(
i
<<
1
)),
sizeof
(
vector
));
cut_ljsqi
=
cut_ljsq
[
typei
=
type
[
i
]];
lj1i
=
lj1
[
typei
];
lj2i
=
lj2
[
typei
];
jneighn
=
(
jneigh
=
list
->
firstneigh
[
i
])
+
list
->
numneigh
[
i
];
for
(;
jneigh
<
jneighn
;
++
jneigh
)
{
j
=
*
jneigh
;
ni
=
sbmask
(
j
);
j
&=
NEIGHMASK
;
{
register
double
*
xj
=
x0
+
(
j
+
(
j
<<
1
));
d
[
0
]
=
xi
[
0
]
-
xj
[
0
];
// pair vector
d
[
1
]
=
xi
[
1
]
-
xj
[
1
];
d
[
2
]
=
xi
[
2
]
-
xj
[
2
];
}
if
((
rsq
=
vec_dot
(
d
,
d
))
>=
cut_out_off_sq
)
continue
;
if
(
rsq
<=
cut_in_off_sq
)
continue
;
r2inv
=
1.0
/
rsq
;
if
(
order1
&&
(
rsq
<
cut_coulsq
))
// coulombic
force_coul
=
ni
==
0
?
qri
*
q
[
j
]
*
sqrt
(
r2inv
)
:
qri
*
q
[
j
]
*
sqrt
(
r2inv
)
*
special_coul
[
ni
];
if
(
rsq
<
cut_ljsqi
[
typej
=
type
[
j
]])
{
// lennard-jones
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
force_lj
=
ni
==
0
?
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
:
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
*
special_lj
[
ni
];
}
else
force_lj
=
0.0
;
fpair
=
(
force_coul
+
force_lj
)
*
r2inv
;
if
(
rsq
<
cut_in_on_sq
)
{
// switching
register
double
rsw
=
(
sqrt
(
rsq
)
-
cut_in_off
)
/
cut_in_diff
;
fpair
*=
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
if
(
rsq
>
cut_out_on_sq
)
{
register
double
rsw
=
(
sqrt
(
rsq
)
-
cut_out_on
)
/
cut_out_diff
;
fpair
*=
1.0
+
rsw
*
rsw
*
(
2.0
*
rsw
-
3.0
);
}
if
(
newton_pair
||
j
<
nlocal
)
{
// force update
register
double
*
fj
=
f0
+
(
j
+
(
j
<<
1
)),
f
;
fi
[
0
]
+=
f
=
d
[
0
]
*
fpair
;
fj
[
0
]
-=
f
;
fi
[
1
]
+=
f
=
d
[
1
]
*
fpair
;
fj
[
1
]
-=
f
;
fi
[
2
]
+=
f
=
d
[
2
]
*
fpair
;
fj
[
2
]
-=
f
;
}
else
{
fi
[
0
]
+=
d
[
0
]
*
fpair
;
fi
[
1
]
+=
d
[
1
]
*
fpair
;
fi
[
2
]
+=
d
[
2
]
*
fpair
;
}
}
}
}
/* ---------------------------------------------------------------------- */
void
PairLJLongCoulLong
::
compute_outer
(
int
eflag
,
int
vflag
)
{
double
evdwl
,
ecoul
,
fpair
;
evdwl
=
ecoul
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
0
;
double
**
x
=
atom
->
x
,
*
x0
=
x
[
0
];
double
**
f
=
atom
->
f
,
*
f0
=
f
[
0
],
*
fi
=
f0
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
int
i
,
j
,
order1
=
ewald_order
&
(
1
<<
1
),
order6
=
ewald_order
&
(
1
<<
6
);
int
*
ineigh
,
*
ineighn
,
*
jneigh
,
*
jneighn
,
typei
,
typej
,
ni
,
respa_flag
;
double
qi
=
0.0
,
qri
=
0.0
;
double
*
cutsqi
,
*
cut_ljsqi
,
*
lj1i
,
*
lj2i
,
*
lj3i
,
*
lj4i
,
*
offseti
;
double
rsq
,
r2inv
,
force_coul
,
force_lj
;
double
g2
=
g_ewald_6
*
g_ewald_6
,
g6
=
g2
*
g2
*
g2
,
g8
=
g6
*
g2
;
double
respa_lj
=
0.0
,
respa_coul
=
0.0
,
frespa
=
0.0
;
vector
xi
,
d
;
double
cut_in_off
=
cut_respa
[
2
];
double
cut_in_on
=
cut_respa
[
3
];
double
cut_in_diff
=
cut_in_on
-
cut_in_off
;
double
cut_in_off_sq
=
cut_in_off
*
cut_in_off
;
double
cut_in_on_sq
=
cut_in_on
*
cut_in_on
;
ineighn
=
(
ineigh
=
list
->
ilist
)
+
list
->
inum
;
for
(;
ineigh
<
ineighn
;
++
ineigh
)
{
// loop over my atoms
i
=
*
ineigh
;
fi
=
f0
+
3
*
i
;
if
(
order1
)
qri
=
(
qi
=
q
[
i
])
*
qqrd2e
;
// initialize constants
offseti
=
offset
[
typei
=
type
[
i
]];
lj1i
=
lj1
[
typei
];
lj2i
=
lj2
[
typei
];
lj3i
=
lj3
[
typei
];
lj4i
=
lj4
[
typei
];
cutsqi
=
cutsq
[
typei
];
cut_ljsqi
=
cut_ljsq
[
typei
];
memcpy
(
xi
,
x0
+
(
i
+
(
i
<<
1
)),
sizeof
(
vector
));
jneighn
=
(
jneigh
=
list
->
firstneigh
[
i
])
+
list
->
numneigh
[
i
];
for
(;
jneigh
<
jneighn
;
++
jneigh
)
{
// loop over neighbors
j
=
*
jneigh
;
ni
=
sbmask
(
j
);
j
&=
NEIGHMASK
;
{
register
double
*
xj
=
x0
+
(
j
+
(
j
<<
1
));
d
[
0
]
=
xi
[
0
]
-
xj
[
0
];
// pair vector
d
[
1
]
=
xi
[
1
]
-
xj
[
1
];
d
[
2
]
=
xi
[
2
]
-
xj
[
2
];
}
if
((
rsq
=
vec_dot
(
d
,
d
))
>=
cutsqi
[
typej
=
type
[
j
]])
continue
;
r2inv
=
1.0
/
rsq
;
if
((
respa_flag
=
(
rsq
>
cut_in_off_sq
)
&&
(
rsq
<
cut_in_on_sq
)))
{
register
double
rsw
=
(
sqrt
(
rsq
)
-
cut_in_off
)
/
cut_in_diff
;
frespa
=
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
if
(
order1
&&
(
rsq
<
cut_coulsq
))
{
// coulombic
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
// series real space
register
double
r
=
sqrt
(
rsq
),
s
=
qri
*
q
[
j
];
if
(
respa_flag
)
// correct for respa
respa_coul
=
ni
==
0
?
frespa
*
s
/
r
:
frespa
*
s
/
r
*
special_coul
[
ni
];
register
double
x
=
g_ewald
*
r
,
t
=
1.0
/
(
1.0
+
EWALD_P
*
x
);
if
(
ni
==
0
)
{
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
;
if
(
eflag
)
ecoul
=
t
;
}
else
{
// correct for special
r
=
s
*
(
1.0
-
special_coul
[
ni
])
/
r
;
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
-
r
;
if
(
eflag
)
ecoul
=
t
-
r
;
}
}
// table real space
else
{
if
(
respa_flag
)
respa_coul
=
ni
==
0
?
// correct for respa
frespa
*
qri
*
q
[
j
]
/
sqrt
(
rsq
)
:
frespa
*
qri
*
q
[
j
]
/
sqrt
(
rsq
)
*
special_coul
[
ni
];
register
union_int_float_t
t
;
t
.
f
=
rsq
;
register
const
int
k
=
(
t
.
i
&
ncoulmask
)
>>
ncoulshiftbits
;
register
double
f
=
(
rsq
-
rtable
[
k
])
*
drtable
[
k
],
qiqj
=
qi
*
q
[
j
];
if
(
ni
==
0
)
{
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]);
if
(
eflag
)
ecoul
=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]);
}
else
{
// correct for special
t
.
f
=
(
1.0
-
special_coul
[
ni
])
*
(
ctable
[
k
]
+
f
*
dctable
[
k
]);
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]
-
t
.
f
);
if
(
eflag
)
ecoul
=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]
-
t
.
f
);
}
}
}
else
force_coul
=
respa_coul
=
ecoul
=
0.0
;
if
(
rsq
<
cut_ljsqi
[
typej
])
{
// lennard-jones
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
if
(
respa_flag
)
respa_lj
=
ni
==
0
?
// correct for respa
frespa
*
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
:
frespa
*
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
*
special_lj
[
ni
];
if
(
order6
)
{
// long-range form
register
double
x2
=
g2
*
rsq
,
a2
=
1.0
/
x2
;
x2
=
a2
*
exp
(
-
x2
)
*
lj4i
[
typej
];
if
(
ni
==
0
)
{
force_lj
=
(
rn
*=
rn
)
*
lj1i
[
typej
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
1.0
)
*
x2
*
rsq
;
if
(
eflag
)
evdwl
=
rn
*
lj3i
[
typej
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
;
}
else
{
// correct for special
register
double
f
=
special_lj
[
ni
],
t
=
rn
*
(
1.0
-
f
);
force_lj
=
f
*
(
rn
*=
rn
)
*
lj1i
[
typej
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
1.0
)
*
x2
*
rsq
+
t
*
lj2i
[
typej
];
if
(
eflag
)
evdwl
=
f
*
rn
*
lj3i
[
typej
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
+
t
*
lj4i
[
typej
];
}
}
else
{
// cut form
if
(
ni
==
0
)
{
force_lj
=
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
]);
if
(
eflag
)
evdwl
=
rn
*
(
rn
*
lj3i
[
typej
]
-
lj4i
[
typej
])
-
offseti
[
typej
];
}
else
{
// correct for special
register
double
f
=
special_lj
[
ni
];
force_lj
=
f
*
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
]);
if
(
eflag
)
evdwl
=
f
*
(
rn
*
(
rn
*
lj3i
[
typej
]
-
lj4i
[
typej
])
-
offseti
[
typej
]);
}
}
}
else
force_lj
=
respa_lj
=
evdwl
=
0.0
;
fpair
=
(
force_coul
+
force_lj
)
*
r2inv
;
frespa
=
fpair
-
(
respa_coul
+
respa_lj
)
*
r2inv
;
if
(
newton_pair
||
j
<
nlocal
)
{
register
double
*
fj
=
f0
+
(
j
+
(
j
<<
1
)),
f
;
fi
[
0
]
+=
f
=
d
[
0
]
*
frespa
;
fj
[
0
]
-=
f
;
fi
[
1
]
+=
f
=
d
[
1
]
*
frespa
;
fj
[
1
]
-=
f
;
fi
[
2
]
+=
f
=
d
[
2
]
*
frespa
;
fj
[
2
]
-=
f
;
}
else
{
fi
[
0
]
+=
d
[
0
]
*
frespa
;
fi
[
1
]
+=
d
[
1
]
*
frespa
;
fi
[
2
]
+=
d
[
2
]
*
frespa
;
}
if
(
evflag
)
ev_tally
(
i
,
j
,
nlocal
,
newton_pair
,
evdwl
,
ecoul
,
fpair
,
d
[
0
],
d
[
1
],
d
[
2
]);
}
}
}
/* ---------------------------------------------------------------------- */
double
PairLJLongCoulLong
::
single
(
int
i
,
int
j
,
int
itype
,
int
jtype
,
double
rsq
,
double
factor_coul
,
double
factor_lj
,
double
&
fforce
)
{
double
r2inv
,
r6inv
,
force_coul
,
force_lj
;
double
g2
=
g_ewald_6
*
g_ewald_6
,
g6
=
g2
*
g2
*
g2
,
g8
=
g6
*
g2
,
*
q
=
atom
->
q
;
double
eng
=
0.0
;
r2inv
=
1.0
/
rsq
;
if
((
ewald_order
&
2
)
&&
(
rsq
<
cut_coulsq
))
{
// coulombic
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
// series real space
register
double
r
=
sqrt
(
rsq
),
x
=
g_ewald
*
r
;
register
double
s
=
force
->
qqrd2e
*
q
[
i
]
*
q
[
j
],
t
=
1.0
/
(
1.0
+
EWALD_P
*
x
);
r
=
s
*
(
1.0
-
factor_coul
)
/
r
;
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
-
r
;
eng
+=
t
-
r
;
}
else
{
// table real space
register
union_int_float_t
t
;
t
.
f
=
rsq
;
register
const
int
k
=
(
t
.
i
&
ncoulmask
)
>>
ncoulshiftbits
;
register
double
f
=
(
rsq
-
rtable
[
k
])
*
drtable
[
k
],
qiqj
=
q
[
i
]
*
q
[
j
];
t
.
f
=
(
1.0
-
factor_coul
)
*
(
ctable
[
k
]
+
f
*
dctable
[
k
]);
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]
-
t
.
f
);
eng
+=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]
-
t
.
f
);
}
}
else
force_coul
=
0.0
;
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
// lennard-jones
r6inv
=
r2inv
*
r2inv
*
r2inv
;
if
(
ewald_order
&
64
)
{
// long-range
register
double
x2
=
g2
*
rsq
,
a2
=
1.0
/
x2
,
t
=
r6inv
*
(
1.0
-
factor_lj
);
x2
=
a2
*
exp
(
-
x2
)
*
lj4
[
itype
][
jtype
];
force_lj
=
factor_lj
*
(
r6inv
*=
r6inv
)
*
lj1
[
itype
][
jtype
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
a2
)
*
x2
*
rsq
+
t
*
lj2
[
itype
][
jtype
];
eng
+=
factor_lj
*
r6inv
*
lj3
[
itype
][
jtype
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
+
t
*
lj4
[
itype
][
jtype
];
}
else
{
// cut
force_lj
=
factor_lj
*
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
eng
+=
factor_lj
*
(
r6inv
*
(
r6inv
*
lj3
[
itype
][
jtype
]
-
lj4
[
itype
][
jtype
])
-
offset
[
itype
][
jtype
]);
}
}
else
force_lj
=
0.0
;
fforce
=
(
force_coul
+
force_lj
)
*
r2inv
;
return
eng
;
}
Event Timeline
Log In to Comment