Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F114962740
angle_cg_cmm.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, May 29, 00:49
Size
12 KB
Mime Type
text/x-c
Expires
Sat, May 31, 00:49 (2 d)
Engine
blob
Format
Raw Data
Handle
26447423
Attached To
rLAMMPS lammps
angle_cg_cmm.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Special Angle Potential for the CMM coarse grained MD potentials.
Contributing author: Axel Kohlmeyer <akohlmey@gmail.com>
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "angle_cg_cmm.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleCGCMM::AngleCGCMM(LAMMPS *lmp) : Angle(lmp) {}
/* ---------------------------------------------------------------------- */
AngleCGCMM::~AngleCGCMM()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(k);
memory->destroy(theta0);
memory->destroy(cg_type);
memory->destroy(epsilon);
memory->destroy(sigma);
memory->destroy(rcut);
}
}
/* ---------------------------------------------------------------------- */
void AngleCGCMM::ev_tally_lj13(int i, int j, int nlocal, int newton_bond,
double evdwl, double fpair,
double delx, double dely, double delz)
{
double v[6];
if (eflag_either) {
if (eflag_global) {
if (newton_bond) {
energy += evdwl;
} else {
if (i < nlocal)
energy += 0.5*evdwl;
if (j < nlocal)
energy += 0.5*evdwl;
}
}
if (eflag_atom) {
if (newton_bond || i < nlocal) eatom[i] += 0.5*evdwl;
if (newton_bond || j < nlocal) eatom[i] += 0.5*evdwl;
}
}
if (vflag_either) {
v[0] = delx*delx*fpair;
v[1] = dely*dely*fpair;
v[2] = delz*delz*fpair;
v[3] = delx*dely*fpair;
v[4] = delx*delz*fpair;
v[5] = dely*delz*fpair;
if (vflag_global) {
if (newton_bond) {
virial[0] += v[0];
virial[1] += v[1];
virial[2] += v[2];
virial[3] += v[3];
virial[4] += v[4];
virial[5] += v[5];
} else {
if (i < nlocal) {
virial[0] += 0.5*v[0];
virial[1] += 0.5*v[1];
virial[2] += 0.5*v[2];
virial[3] += 0.5*v[3];
virial[4] += 0.5*v[4];
virial[5] += 0.5*v[5];
}
if (j < nlocal) {
virial[0] += 0.5*v[0];
virial[1] += 0.5*v[1];
virial[2] += 0.5*v[2];
virial[3] += 0.5*v[3];
virial[4] += 0.5*v[4];
virial[5] += 0.5*v[5];
}
}
}
if (vflag_atom) {
if (newton_bond || i < nlocal) {
vatom[i][0] += 0.5*v[0];
vatom[i][1] += 0.5*v[1];
vatom[i][2] += 0.5*v[2];
vatom[i][3] += 0.5*v[3];
vatom[i][4] += 0.5*v[4];
vatom[i][5] += 0.5*v[5];
}
if (newton_bond || j < nlocal) {
vatom[j][0] += 0.5*v[0];
vatom[j][1] += 0.5*v[1];
vatom[j][2] += 0.5*v[2];
vatom[j][3] += 0.5*v[3];
vatom[j][4] += 0.5*v[4];
vatom[j][5] += 0.5*v[5];
}
}
}
}
/* ---------------------------------------------------------------------- */
void AngleCGCMM::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2,delx3,dely3,delz3;
double eangle,f1[3],f3[3],e13,f13;
double dtheta,tk;
double rsq1,rsq2,rsq3,r1,r2,r3,c,s,a,a11,a12,a22;
eangle = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
// 1-3 LJ interaction.
// we only want to use the repulsive part,
// so this has to be done here and not in the
// general non-bonded code.
delx3 = x[i1][0] - x[i3][0];
dely3 = x[i1][1] - x[i3][1];
delz3 = x[i1][2] - x[i3][2];
rsq3 = delx3*delx3 + dely3*dely3 + delz3*delz3;
r3 = sqrt(rsq3);
f13=0.0;
e13=0.0;
if (r3 < rcut[type]) {
const int cgt = cg_type[type];
const double cgpow1 = cg_pow1[cgt];
const double cgpow2 = cg_pow2[cgt];
const double cgpref = cg_prefact[cgt];
const double ratio = sigma[type]/r3;
const double eps = epsilon[type];
f13 = cgpref*eps / rsq3 * (cgpow1*pow(ratio,cgpow1)
- cgpow2*pow(ratio,cgpow2));
if (eflag) e13 = eps + cgpref*eps * (pow(ratio,cgpow1)
- pow(ratio,cgpow2));
}
// force & energy
dtheta = acos(c) - theta0[type];
tk = k[type] * dtheta;
if (eflag) eangle = tk*dtheta;
a = -2.0 * tk * s;
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
f1[0] = a11*delx1 + a12*delx2;
f1[1] = a11*dely1 + a12*dely2;
f1[2] = a11*delz1 + a12*delz2;
f3[0] = a22*delx2 + a12*delx1;
f3[1] = a22*dely2 + a12*dely1;
f3[2] = a22*delz2 + a12*delz1;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0] + f13*delx3;
f[i1][1] += f1[1] + f13*dely3;
f[i1][2] += f1[2] + f13*delz3;
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0] - f13*delx3;
f[i3][1] += f3[1] - f13*dely3;
f[i3][2] += f3[2] - f13*delz3;
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
if (evflag) ev_tally_lj13(i1,i3,nlocal,newton_bond,
e13,f13,delx3,dely3,delz3);
}
}
/* ---------------------------------------------------------------------- */
void AngleCGCMM::allocate()
{
allocated = 1;
int n = atom->nangletypes;
memory->create(k,n+1,"angle:k");
memory->create(theta0,n+1,"angle:theta0");
memory->create(epsilon,n+1,"angle:epsilon");
memory->create(sigma,n+1,"angle:sigma");
memory->create(rcut,n+1,"angle:rcut");
memory->create(cg_type,n+1,"angle:cg_type");
memory->create(setflag,n+1,"angle:setflag");
for (int i = 1; i <= n; i++) {
cg_type[i] = CG_NOT_SET;
setflag[i] = 0;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void AngleCGCMM::coeff(int narg, char **arg)
{
if (narg != 6) error->all(FLERR,"Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(arg[0],atom->nangletypes,ilo,ihi);
double k_one = atof(arg[1]);
double theta0_one = atof(arg[2]);
int cg_type_one=find_cg_type(arg[3]);
if (cg_type_one == CG_NOT_SET) error->all(FLERR,"Error reading CG type flag.");
double epsilon_one = atof(arg[4]);
double sigma_one = atof(arg[5]);
// find minimum of LJ potential. we only want to include
// the repulsive part of the 1-3 LJ.
double rcut_one = sigma_one*exp(
1.0/(cg_pow1[cg_type_one]-cg_pow2[cg_type_one])
*log(cg_pow1[cg_type_one]/cg_pow2[cg_type_one])
);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
// convert theta0 from degrees to radians
theta0[i] = theta0_one/180.0 * MY_PI;
epsilon[i] = epsilon_one;
sigma[i] = sigma_one;
rcut[i] = rcut_one;
cg_type[i] = cg_type_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleCGCMM::equilibrium_angle(int i)
{
return theta0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleCGCMM::write_restart(FILE *fp)
{
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
fwrite(&epsilon[1],sizeof(double),atom->nangletypes,fp);
fwrite(&sigma[1],sizeof(double),atom->nangletypes,fp);
fwrite(&rcut[1],sizeof(double),atom->nangletypes,fp);
fwrite(&cg_type[1],sizeof(int),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleCGCMM::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&k[1],sizeof(double),atom->nangletypes,fp);
fread(&theta0[1],sizeof(double),atom->nangletypes,fp);
fread(&epsilon[1],sizeof(double),atom->nangletypes,fp);
fread(&sigma[1],sizeof(double),atom->nangletypes,fp);
fread(&rcut[1],sizeof(double),atom->nangletypes,fp);
fread(&cg_type[1],sizeof(int),atom->nangletypes,fp);
}
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&epsilon[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&sigma[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&rcut[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&cg_type[1],atom->nangletypes,MPI_INT,0,world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ---------------------------------------------------------------------- */
double AngleCGCMM::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
// 1-3 LJ interaction.
double delx3 = x[i1][0] - x[i3][0];
double dely3 = x[i1][1] - x[i3][1];
double delz3 = x[i1][2] - x[i3][2];
domain->minimum_image(delx3,dely3,delz3);
const double r3 = sqrt(delx3*delx3 + dely3*dely3 + delz3*delz3);
double e13=0.0;
if (r3 < rcut[type]) {
const int cgt = cg_type[type];
const double cgpow1 = cg_pow1[cgt];
const double cgpow2 = cg_pow2[cgt];
const double cgpref = cg_prefact[cgt];
const double ratio = sigma[type]/r3;
const double eps = epsilon[type];
e13 = eps + cgpref*eps * (pow(ratio,cgpow1)
- pow(ratio,cgpow2));
}
double dtheta = acos(c) - theta0[type];
double tk = k[type] * dtheta;
return tk*dtheta + e13;
}
Event Timeline
Log In to Comment