Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F108056519
dihedral_harmonic_intel.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Apr 13, 17:42
Size
11 KB
Mime Type
text/x-c++
Expires
Tue, Apr 15, 17:42 (2 d)
Engine
blob
Format
Raw Data
Handle
25530119
Attached To
rLAMMPS lammps
dihedral_harmonic_intel.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: W. Michael Brown (Intel)
------------------------------------------------------------------------- */
#include "mpi.h"
#include "math.h"
#include "dihedral_harmonic_intel.h"
#include "atom.h"
#include "comm.h"
#include "memory.h"
#include "neighbor.h"
#include "domain.h"
#include "force.h"
#include "pair.h"
#include "update.h"
#include "error.h"
#include "suffix.h"
using
namespace
LAMMPS_NS
;
#define PTOLERANCE (flt_t)1.05
#define MTOLERANCE (flt_t)-1.05
typedef
struct
{
int
a
,
b
,
c
,
d
,
t
;
}
int5_t
;
/* ---------------------------------------------------------------------- */
DihedralHarmonicIntel
::
DihedralHarmonicIntel
(
class
LAMMPS
*
lmp
)
:
DihedralHarmonic
(
lmp
)
{
suffix_flag
|=
Suffix
::
INTEL
;
}
/* ---------------------------------------------------------------------- */
void
DihedralHarmonicIntel
::
compute
(
int
eflag
,
int
vflag
)
{
#ifdef _LMP_INTEL_OFFLOAD
if
(
_use_base
)
{
DihedralHarmonic
::
compute
(
eflag
,
vflag
);
return
;
}
#endif
if
(
fix
->
precision
()
==
FixIntel
::
PREC_MODE_MIXED
)
compute
<
float
,
double
>
(
eflag
,
vflag
,
fix
->
get_mixed_buffers
(),
force_const_single
);
else
if
(
fix
->
precision
()
==
FixIntel
::
PREC_MODE_DOUBLE
)
compute
<
double
,
double
>
(
eflag
,
vflag
,
fix
->
get_double_buffers
(),
force_const_double
);
else
compute
<
float
,
float
>
(
eflag
,
vflag
,
fix
->
get_single_buffers
(),
force_const_single
);
}
/* ---------------------------------------------------------------------- */
template
<
class
flt_t
,
class
acc_t
>
void
DihedralHarmonicIntel
::
compute
(
int
eflag
,
int
vflag
,
IntelBuffers
<
flt_t
,
acc_t
>
*
buffers
,
const
ForceConst
<
flt_t
>
&
fc
)
{
if
(
eflag
||
vflag
)
{
ev_setup
(
eflag
,
vflag
);
}
else
evflag
=
0
;
if
(
evflag
)
{
if
(
eflag
)
{
if
(
force
->
newton_bond
)
eval
<
1
,
1
,
1
>
(
vflag
,
buffers
,
fc
);
else
eval
<
1
,
1
,
0
>
(
vflag
,
buffers
,
fc
);
}
else
{
if
(
force
->
newton_bond
)
eval
<
1
,
0
,
1
>
(
vflag
,
buffers
,
fc
);
else
eval
<
1
,
0
,
0
>
(
vflag
,
buffers
,
fc
);
}
}
else
{
if
(
force
->
newton_bond
)
eval
<
0
,
0
,
1
>
(
vflag
,
buffers
,
fc
);
else
eval
<
0
,
0
,
0
>
(
vflag
,
buffers
,
fc
);
}
}
template
<
int
EVFLAG
,
int
EFLAG
,
int
NEWTON_BOND
,
class
flt_t
,
class
acc_t
>
void
DihedralHarmonicIntel
::
eval
(
const
int
vflag
,
IntelBuffers
<
flt_t
,
acc_t
>
*
buffers
,
const
ForceConst
<
flt_t
>
&
fc
)
{
const
int
inum
=
neighbor
->
ndihedrallist
;
if
(
inum
==
0
)
return
;
ATOM_T
*
_noalias
const
x
=
buffers
->
get_x
(
0
);
const
int
nlocal
=
atom
->
nlocal
;
const
int
nall
=
nlocal
+
atom
->
nghost
;
int
f_stride
;
if
(
NEWTON_BOND
)
f_stride
=
buffers
->
get_stride
(
nall
);
else
f_stride
=
buffers
->
get_stride
(
nlocal
);
int
tc
;
FORCE_T
*
_noalias
f_start
;
acc_t
*
_noalias
ev_global
;
IP_PRE_get_buffers
(
0
,
buffers
,
fix
,
tc
,
f_start
,
ev_global
);
const
int
nthreads
=
tc
;
acc_t
oedihedral
,
ov0
,
ov1
,
ov2
,
ov3
,
ov4
,
ov5
;
if
(
EVFLAG
)
{
if
(
EFLAG
)
oedihedral
=
(
acc_t
)
0.0
;
if
(
vflag
)
{
ov0
=
ov1
=
ov2
=
ov3
=
ov4
=
ov5
=
(
acc_t
)
0.0
;
}
}
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
reduction(+:oedihedral,ov0,ov1,ov2,ov3,ov4,ov5)
#endif
{
int
nfrom
,
nto
,
tid
;
IP_PRE_omp_range_id
(
nfrom
,
nto
,
tid
,
inum
,
nthreads
);
FORCE_T
*
_noalias
const
f
=
f_start
+
(
tid
*
f_stride
);
if
(
fix
->
need_zero
(
tid
))
memset
(
f
,
0
,
f_stride
*
sizeof
(
FORCE_T
));
const
int5_t
*
_noalias
const
dihedrallist
=
(
int5_t
*
)
neighbor
->
dihedrallist
[
0
];
acc_t
sedihedral
,
sv0
,
sv1
,
sv2
,
sv3
,
sv4
,
sv5
;
if
(
EVFLAG
)
{
if
(
EFLAG
)
sedihedral
=
(
acc_t
)
0.0
;
if
(
vflag
)
{
sv0
=
sv1
=
sv2
=
sv3
=
sv4
=
sv5
=
(
acc_t
)
0.0
;
}
}
for
(
int
n
=
nfrom
;
n
<
nto
;
n
++
)
{
const
int
i1
=
dihedrallist
[
n
].
a
;
const
int
i2
=
dihedrallist
[
n
].
b
;
const
int
i3
=
dihedrallist
[
n
].
c
;
const
int
i4
=
dihedrallist
[
n
].
d
;
const
int
type
=
dihedrallist
[
n
].
t
;
// 1st bond
const
flt_t
vb1x
=
x
[
i1
].
x
-
x
[
i2
].
x
;
const
flt_t
vb1y
=
x
[
i1
].
y
-
x
[
i2
].
y
;
const
flt_t
vb1z
=
x
[
i1
].
z
-
x
[
i2
].
z
;
// 2nd bond
const
flt_t
vb2xm
=
x
[
i2
].
x
-
x
[
i3
].
x
;
const
flt_t
vb2ym
=
x
[
i2
].
y
-
x
[
i3
].
y
;
const
flt_t
vb2zm
=
x
[
i2
].
z
-
x
[
i3
].
z
;
// 3rd bond
const
flt_t
vb3x
=
x
[
i4
].
x
-
x
[
i3
].
x
;
const
flt_t
vb3y
=
x
[
i4
].
y
-
x
[
i3
].
y
;
const
flt_t
vb3z
=
x
[
i4
].
z
-
x
[
i3
].
z
;
// c,s calculation
const
flt_t
ax
=
vb1y
*
vb2zm
-
vb1z
*
vb2ym
;
const
flt_t
ay
=
vb1z
*
vb2xm
-
vb1x
*
vb2zm
;
const
flt_t
az
=
vb1x
*
vb2ym
-
vb1y
*
vb2xm
;
const
flt_t
bx
=
vb3y
*
vb2zm
-
vb3z
*
vb2ym
;
const
flt_t
by
=
vb3z
*
vb2xm
-
vb3x
*
vb2zm
;
const
flt_t
bz
=
vb3x
*
vb2ym
-
vb3y
*
vb2xm
;
const
flt_t
rasq
=
ax
*
ax
+
ay
*
ay
+
az
*
az
;
const
flt_t
rbsq
=
bx
*
bx
+
by
*
by
+
bz
*
bz
;
const
flt_t
rgsq
=
vb2xm
*
vb2xm
+
vb2ym
*
vb2ym
+
vb2zm
*
vb2zm
;
const
flt_t
rg
=
sqrt
(
rgsq
);
flt_t
rginv
,
ra2inv
,
rb2inv
;
rginv
=
ra2inv
=
rb2inv
=
(
flt_t
)
0.0
;
if
(
rg
>
0
)
rginv
=
(
flt_t
)
1.0
/
rg
;
if
(
rasq
>
0
)
ra2inv
=
(
flt_t
)
1.0
/
rasq
;
if
(
rbsq
>
0
)
rb2inv
=
(
flt_t
)
1.0
/
rbsq
;
const
flt_t
rabinv
=
sqrt
(
ra2inv
*
rb2inv
);
flt_t
c
=
(
ax
*
bx
+
ay
*
by
+
az
*
bz
)
*
rabinv
;
const
flt_t
s
=
rg
*
rabinv
*
(
ax
*
vb3x
+
ay
*
vb3y
+
az
*
vb3z
);
// error check
if
(
c
>
PTOLERANCE
||
c
<
MTOLERANCE
)
{
int
me
=
comm
->
me
;
if
(
screen
)
{
char
str
[
128
];
sprintf
(
str
,
"Dihedral problem: %d/%d "
BIGINT_FORMAT
" "
TAGINT_FORMAT
" "
TAGINT_FORMAT
" "
TAGINT_FORMAT
" "
TAGINT_FORMAT
,
me
,
tid
,
update
->
ntimestep
,
atom
->
tag
[
i1
],
atom
->
tag
[
i2
],
atom
->
tag
[
i3
],
atom
->
tag
[
i4
]);
error
->
warning
(
FLERR
,
str
,
0
);
fprintf
(
screen
,
" 1st atom: %d %g %g %g
\n
"
,
me
,
x
[
i1
].
x
,
x
[
i1
].
y
,
x
[
i1
].
z
);
fprintf
(
screen
,
" 2nd atom: %d %g %g %g
\n
"
,
me
,
x
[
i2
].
x
,
x
[
i2
].
y
,
x
[
i2
].
z
);
fprintf
(
screen
,
" 3rd atom: %d %g %g %g
\n
"
,
me
,
x
[
i3
].
x
,
x
[
i3
].
y
,
x
[
i3
].
z
);
fprintf
(
screen
,
" 4th atom: %d %g %g %g
\n
"
,
me
,
x
[
i4
].
x
,
x
[
i4
].
y
,
x
[
i4
].
z
);
}
}
if
(
c
>
(
flt_t
)
1.0
)
c
=
(
flt_t
)
1.0
;
if
(
c
<
(
flt_t
)
-
1.0
)
c
=
(
flt_t
)
-
1.0
;
const
flt_t
tcos_shift
=
fc
.
bp
[
type
].
cos_shift
;
const
flt_t
tsin_shift
=
fc
.
bp
[
type
].
sin_shift
;
const
flt_t
tk
=
fc
.
bp
[
type
].
k
;
const
int
m
=
fc
.
bp
[
type
].
multiplicity
;
flt_t
p
=
(
flt_t
)
1.0
;
flt_t
ddf1
,
df1
;
ddf1
=
df1
=
(
flt_t
)
0.0
;
for
(
int
i
=
0
;
i
<
m
;
i
++
)
{
ddf1
=
p
*
c
-
df1
*
s
;
df1
=
p
*
s
+
df1
*
c
;
p
=
ddf1
;
}
p
=
p
*
tcos_shift
+
df1
*
tsin_shift
;
df1
=
df1
*
tcos_shift
-
ddf1
*
tsin_shift
;
df1
*=
-
m
;
p
+=
(
flt_t
)
1.0
;
if
(
m
==
0
)
{
p
=
(
flt_t
)
1.0
+
tcos_shift
;
df1
=
(
flt_t
)
0.0
;
}
const
flt_t
fg
=
vb1x
*
vb2xm
+
vb1y
*
vb2ym
+
vb1z
*
vb2zm
;
const
flt_t
hg
=
vb3x
*
vb2xm
+
vb3y
*
vb2ym
+
vb3z
*
vb2zm
;
const
flt_t
fga
=
fg
*
ra2inv
*
rginv
;
const
flt_t
hgb
=
hg
*
rb2inv
*
rginv
;
const
flt_t
gaa
=
-
ra2inv
*
rg
;
const
flt_t
gbb
=
rb2inv
*
rg
;
const
flt_t
dtfx
=
gaa
*
ax
;
const
flt_t
dtfy
=
gaa
*
ay
;
const
flt_t
dtfz
=
gaa
*
az
;
const
flt_t
dtgx
=
fga
*
ax
-
hgb
*
bx
;
const
flt_t
dtgy
=
fga
*
ay
-
hgb
*
by
;
const
flt_t
dtgz
=
fga
*
az
-
hgb
*
bz
;
const
flt_t
dthx
=
gbb
*
bx
;
const
flt_t
dthy
=
gbb
*
by
;
const
flt_t
dthz
=
gbb
*
bz
;
const
flt_t
df
=
-
tk
*
df1
;
const
flt_t
sx2
=
df
*
dtgx
;
const
flt_t
sy2
=
df
*
dtgy
;
const
flt_t
sz2
=
df
*
dtgz
;
flt_t
f1x
=
df
*
dtfx
;
flt_t
f1y
=
df
*
dtfy
;
flt_t
f1z
=
df
*
dtfz
;
const
flt_t
f2x
=
sx2
-
f1x
;
const
flt_t
f2y
=
sy2
-
f1y
;
const
flt_t
f2z
=
sz2
-
f1z
;
flt_t
f4x
=
df
*
dthx
;
flt_t
f4y
=
df
*
dthy
;
flt_t
f4z
=
df
*
dthz
;
const
flt_t
f3x
=
-
sx2
-
f4x
;
const
flt_t
f3y
=
-
sy2
-
f4y
;
const
flt_t
f3z
=
-
sz2
-
f4z
;
if
(
EVFLAG
)
{
flt_t
deng
;
if
(
EFLAG
)
deng
=
tk
*
p
;
IP_PRE_ev_tally_dihed
(
EFLAG
,
eatom
,
vflag
,
deng
,
i1
,
i2
,
i3
,
i4
,
f1x
,
f1y
,
f1z
,
f3x
,
f3y
,
f3z
,
f4x
,
f4y
,
f4z
,
vb1x
,
vb1y
,
vb1z
,
-
vb2xm
,
-
vb2ym
,
-
vb2zm
,
vb3x
,
vb3y
,
vb3z
,
sedihedral
,
f
,
NEWTON_BOND
,
nlocal
,
sv0
,
sv1
,
sv2
,
sv3
,
sv4
,
sv5
);
}
{
if
(
NEWTON_BOND
||
i1
<
nlocal
)
{
f
[
i1
].
x
+=
f1x
;
f
[
i1
].
y
+=
f1y
;
f
[
i1
].
z
+=
f1z
;
}
if
(
NEWTON_BOND
||
i2
<
nlocal
)
{
f
[
i2
].
x
+=
f2x
;
f
[
i2
].
y
+=
f2y
;
f
[
i2
].
z
+=
f2z
;
}
if
(
NEWTON_BOND
||
i3
<
nlocal
)
{
f
[
i3
].
x
+=
f3x
;
f
[
i3
].
y
+=
f3y
;
f
[
i3
].
z
+=
f3z
;
}
if
(
NEWTON_BOND
||
i4
<
nlocal
)
{
f
[
i4
].
x
+=
f4x
;
f
[
i4
].
y
+=
f4y
;
f
[
i4
].
z
+=
f4z
;
}
}
}
// for n
if
(
EVFLAG
)
{
if
(
EFLAG
)
oedihedral
+=
sedihedral
;
if
(
vflag
)
{
ov0
+=
sv0
;
ov1
+=
sv1
;
ov2
+=
sv2
;
ov3
+=
sv3
;
ov4
+=
sv4
;
ov5
+=
sv5
;
}
}
}
// omp parallel
if
(
EVFLAG
)
{
if
(
EFLAG
)
energy
+=
oedihedral
;
if
(
vflag
)
{
virial
[
0
]
+=
ov0
;
virial
[
1
]
+=
ov1
;
virial
[
2
]
+=
ov2
;
virial
[
3
]
+=
ov3
;
virial
[
4
]
+=
ov4
;
virial
[
5
]
+=
ov5
;
}
}
fix
->
set_reduce_flag
();
}
/* ---------------------------------------------------------------------- */
void
DihedralHarmonicIntel
::
init_style
()
{
DihedralHarmonic
::
init_style
();
int
ifix
=
modify
->
find_fix
(
"package_intel"
);
if
(
ifix
<
0
)
error
->
all
(
FLERR
,
"The 'package intel' command is required for /intel styles"
);
fix
=
static_cast
<
FixIntel
*>
(
modify
->
fix
[
ifix
]);
#ifdef _LMP_INTEL_OFFLOAD
_use_base
=
0
;
if
(
fix
->
offload_balance
()
!=
0.0
)
{
_use_base
=
1
;
return
;
}
#endif
fix
->
bond_init_check
();
if
(
fix
->
precision
()
==
FixIntel
::
PREC_MODE_MIXED
)
pack_force_const
(
force_const_single
,
fix
->
get_mixed_buffers
());
else
if
(
fix
->
precision
()
==
FixIntel
::
PREC_MODE_DOUBLE
)
pack_force_const
(
force_const_double
,
fix
->
get_double_buffers
());
else
pack_force_const
(
force_const_single
,
fix
->
get_single_buffers
());
}
/* ---------------------------------------------------------------------- */
template
<
class
flt_t
,
class
acc_t
>
void
DihedralHarmonicIntel
::
pack_force_const
(
ForceConst
<
flt_t
>
&
fc
,
IntelBuffers
<
flt_t
,
acc_t
>
*
buffers
)
{
const
int
bp1
=
atom
->
ndihedraltypes
+
1
;
fc
.
set_ntypes
(
bp1
,
memory
);
for
(
int
i
=
0
;
i
<
bp1
;
i
++
)
{
fc
.
bp
[
i
].
multiplicity
=
multiplicity
[
i
];
fc
.
bp
[
i
].
cos_shift
=
cos_shift
[
i
];
fc
.
bp
[
i
].
sin_shift
=
sin_shift
[
i
];
fc
.
bp
[
i
].
k
=
k
[
i
];
}
}
/* ---------------------------------------------------------------------- */
template
<
class
flt_t
>
void
DihedralHarmonicIntel
::
ForceConst
<
flt_t
>::
set_ntypes
(
const
int
nbondtypes
,
Memory
*
memory
)
{
if
(
nbondtypes
!=
_nbondtypes
)
{
if
(
_nbondtypes
>
0
)
_memory
->
destroy
(
bp
);
if
(
nbondtypes
>
0
)
_memory
->
create
(
bp
,
nbondtypes
,
"dihedralcharmmintel.bp"
);
}
_nbondtypes
=
nbondtypes
;
_memory
=
memory
;
}
Event Timeline
Log In to Comment