Page MenuHomec4science

dihedral_harmonic_intel.cpp
No OneTemporary

File Metadata

Created
Mon, Nov 11, 08:13

dihedral_harmonic_intel.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: W. Michael Brown (Intel)
------------------------------------------------------------------------- */
#include "mpi.h"
#include "math.h"
#include "dihedral_harmonic_intel.h"
#include "atom.h"
#include "comm.h"
#include "memory.h"
#include "neighbor.h"
#include "domain.h"
#include "force.h"
#include "pair.h"
#include "update.h"
#include "error.h"
#include "suffix.h"
using namespace LAMMPS_NS;
#define PTOLERANCE (flt_t)1.05
#define MTOLERANCE (flt_t)-1.05
typedef struct { int a,b,c,d,t; } int5_t;
/* ---------------------------------------------------------------------- */
DihedralHarmonicIntel::DihedralHarmonicIntel(class LAMMPS *lmp)
: DihedralHarmonic(lmp)
{
suffix_flag |= Suffix::INTEL;
}
/* ---------------------------------------------------------------------- */
void DihedralHarmonicIntel::compute(int eflag, int vflag)
{
#ifdef _LMP_INTEL_OFFLOAD
if (_use_base) {
DihedralHarmonic::compute(eflag, vflag);
return;
}
#endif
if (fix->precision() == FixIntel::PREC_MODE_MIXED)
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
force_const_single);
else if (fix->precision() == FixIntel::PREC_MODE_DOUBLE)
compute<double,double>(eflag, vflag, fix->get_double_buffers(),
force_const_double);
else
compute<float,float>(eflag, vflag, fix->get_single_buffers(),
force_const_single);
}
/* ---------------------------------------------------------------------- */
template <class flt_t, class acc_t>
void DihedralHarmonicIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
} else evflag = 0;
if (evflag) {
if (eflag) {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,0,1>(vflag, buffers, fc);
else
eval<1,0,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
eval<0,0,1>(vflag, buffers, fc);
else
eval<0,0,0>(vflag, buffers, fc);
}
}
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void DihedralHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->ndihedrallist;
if (inum == 0) return;
ATOM_T * _noalias const x = buffers->get_x(0);
const int nlocal = atom->nlocal;
const int nall = nlocal + atom->nghost;
int f_stride;
if (NEWTON_BOND) f_stride = buffers->get_stride(nall);
else f_stride = buffers->get_stride(nlocal);
int tc;
FORCE_T * _noalias f_start;
acc_t * _noalias ev_global;
IP_PRE_get_buffers(0, buffers, fix, tc, f_start, ev_global);
const int nthreads = tc;
acc_t oedihedral, ov0, ov1, ov2, ov3, ov4, ov5;
if (EVFLAG) {
if (EFLAG)
oedihedral = (acc_t)0.0;
if (vflag) {
ov0 = ov1 = ov2 = ov3 = ov4 = ov5 = (acc_t)0.0;
}
}
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
reduction(+:oedihedral,ov0,ov1,ov2,ov3,ov4,ov5)
#endif
{
int nfrom, nto, tid;
IP_PRE_omp_range_id(nfrom, nto, tid, inum, nthreads);
FORCE_T * _noalias const f = f_start + (tid * f_stride);
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int5_t * _noalias const dihedrallist =
(int5_t *) neighbor->dihedrallist[0];
acc_t sedihedral, sv0, sv1, sv2, sv3, sv4, sv5;
if (EVFLAG) {
if (EFLAG)
sedihedral = (acc_t)0.0;
if (vflag) {
sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0.0;
}
}
for (int n = nfrom; n < nto; n++) {
const int i1 = dihedrallist[n].a;
const int i2 = dihedrallist[n].b;
const int i3 = dihedrallist[n].c;
const int i4 = dihedrallist[n].d;
const int type = dihedrallist[n].t;
// 1st bond
const flt_t vb1x = x[i1].x - x[i2].x;
const flt_t vb1y = x[i1].y - x[i2].y;
const flt_t vb1z = x[i1].z - x[i2].z;
// 2nd bond
const flt_t vb2xm = x[i2].x - x[i3].x;
const flt_t vb2ym = x[i2].y - x[i3].y;
const flt_t vb2zm = x[i2].z - x[i3].z;
// 3rd bond
const flt_t vb3x = x[i4].x - x[i3].x;
const flt_t vb3y = x[i4].y - x[i3].y;
const flt_t vb3z = x[i4].z - x[i3].z;
// c,s calculation
const flt_t ax = vb1y*vb2zm - vb1z*vb2ym;
const flt_t ay = vb1z*vb2xm - vb1x*vb2zm;
const flt_t az = vb1x*vb2ym - vb1y*vb2xm;
const flt_t bx = vb3y*vb2zm - vb3z*vb2ym;
const flt_t by = vb3z*vb2xm - vb3x*vb2zm;
const flt_t bz = vb3x*vb2ym - vb3y*vb2xm;
const flt_t rasq = ax*ax + ay*ay + az*az;
const flt_t rbsq = bx*bx + by*by + bz*bz;
const flt_t rgsq = vb2xm*vb2xm + vb2ym*vb2ym + vb2zm*vb2zm;
const flt_t rg = sqrt(rgsq);
flt_t rginv, ra2inv, rb2inv;
rginv = ra2inv = rb2inv = (flt_t)0.0;
if (rg > 0) rginv = (flt_t)1.0/rg;
if (rasq > 0) ra2inv = (flt_t)1.0/rasq;
if (rbsq > 0) rb2inv = (flt_t)1.0/rbsq;
const flt_t rabinv = sqrt(ra2inv*rb2inv);
flt_t c = (ax*bx + ay*by + az*bz)*rabinv;
const flt_t s = rg*rabinv*(ax*vb3x + ay*vb3y + az*vb3z);
// error check
if (c > PTOLERANCE || c < MTOLERANCE) {
int me = comm->me;
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d/%d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,tid,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
}
if (c > (flt_t)1.0) c = (flt_t)1.0;
if (c < (flt_t)-1.0) c = (flt_t)-1.0;
const flt_t tcos_shift = fc.bp[type].cos_shift;
const flt_t tsin_shift = fc.bp[type].sin_shift;
const flt_t tk = fc.bp[type].k;
const int m = fc.bp[type].multiplicity;
flt_t p = (flt_t)1.0;
flt_t ddf1, df1;
ddf1 = df1 = (flt_t)0.0;
for (int i = 0; i < m; i++) {
ddf1 = p*c - df1*s;
df1 = p*s + df1*c;
p = ddf1;
}
p = p*tcos_shift + df1*tsin_shift;
df1 = df1*tcos_shift - ddf1*tsin_shift;
df1 *= -m;
p += (flt_t)1.0;
if (m == 0) {
p = (flt_t)1.0 + tcos_shift;
df1 = (flt_t)0.0;
}
const flt_t fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm;
const flt_t hg = vb3x*vb2xm + vb3y*vb2ym + vb3z*vb2zm;
const flt_t fga = fg*ra2inv*rginv;
const flt_t hgb = hg*rb2inv*rginv;
const flt_t gaa = -ra2inv*rg;
const flt_t gbb = rb2inv*rg;
const flt_t dtfx = gaa*ax;
const flt_t dtfy = gaa*ay;
const flt_t dtfz = gaa*az;
const flt_t dtgx = fga*ax - hgb*bx;
const flt_t dtgy = fga*ay - hgb*by;
const flt_t dtgz = fga*az - hgb*bz;
const flt_t dthx = gbb*bx;
const flt_t dthy = gbb*by;
const flt_t dthz = gbb*bz;
const flt_t df = -tk * df1;
const flt_t sx2 = df*dtgx;
const flt_t sy2 = df*dtgy;
const flt_t sz2 = df*dtgz;
flt_t f1x = df*dtfx;
flt_t f1y = df*dtfy;
flt_t f1z = df*dtfz;
const flt_t f2x = sx2 - f1x;
const flt_t f2y = sy2 - f1y;
const flt_t f2z = sz2 - f1z;
flt_t f4x = df*dthx;
flt_t f4y = df*dthy;
flt_t f4z = df*dthz;
const flt_t f3x = -sx2 - f4x;
const flt_t f3y = -sy2 - f4y;
const flt_t f3z = -sz2 - f4z;
if (EVFLAG) {
flt_t deng;
if (EFLAG) deng = tk * p;
IP_PRE_ev_tally_dihed(EFLAG, eatom, vflag, deng, i1, i2, i3, i4, f1x,
f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z, vb1x,
vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x, vb3y,
vb3z, sedihedral, f, NEWTON_BOND, nlocal,
sv0, sv1, sv2, sv3, sv4, sv5);
}
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
}
if (NEWTON_BOND || i4 < nlocal) {
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
}
}
} // for n
if (EVFLAG) {
if (EFLAG) oedihedral += sedihedral;
if (vflag) {
ov0 += sv0; ov1 += sv1; ov2 += sv2; ov3 += sv3; ov4 += sv4; ov5 += sv5;
}
}
} // omp parallel
if (EVFLAG) {
if (EFLAG) energy += oedihedral;
if (vflag) {
virial[0] += ov0; virial[1] += ov1; virial[2] += ov2;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
}
}
fix->set_reduce_flag();
}
/* ---------------------------------------------------------------------- */
void DihedralHarmonicIntel::init_style()
{
DihedralHarmonic::init_style();
int ifix = modify->find_fix("package_intel");
if (ifix < 0)
error->all(FLERR,
"The 'package intel' command is required for /intel styles");
fix = static_cast<FixIntel *>(modify->fix[ifix]);
#ifdef _LMP_INTEL_OFFLOAD
_use_base = 0;
if (fix->offload_balance() != 0.0) {
_use_base = 1;
return;
}
#endif
fix->bond_init_check();
if (fix->precision() == FixIntel::PREC_MODE_MIXED)
pack_force_const(force_const_single, fix->get_mixed_buffers());
else if (fix->precision() == FixIntel::PREC_MODE_DOUBLE)
pack_force_const(force_const_double, fix->get_double_buffers());
else
pack_force_const(force_const_single, fix->get_single_buffers());
}
/* ---------------------------------------------------------------------- */
template <class flt_t, class acc_t>
void DihedralHarmonicIntel::pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t,acc_t> *buffers)
{
const int bp1 = atom->ndihedraltypes + 1;
fc.set_ntypes(bp1,memory);
for (int i = 0; i < bp1; i++) {
fc.bp[i].multiplicity = multiplicity[i];
fc.bp[i].cos_shift = cos_shift[i];
fc.bp[i].sin_shift = sin_shift[i];
fc.bp[i].k = k[i];
}
}
/* ---------------------------------------------------------------------- */
template <class flt_t>
void DihedralHarmonicIntel::ForceConst<flt_t>::set_ntypes(const int nbondtypes,
Memory *memory) {
if (nbondtypes != _nbondtypes) {
if (_nbondtypes > 0)
_memory->destroy(bp);
if (nbondtypes > 0)
_memory->create(bp,nbondtypes,"dihedralcharmmintel.bp");
}
_nbondtypes = nbondtypes;
_memory = memory;
}

Event Timeline