Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91027824
angle_quartic.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 02:03
Size
7 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 02:03 (2 d)
Engine
blob
Format
Raw Data
Handle
22169222
Attached To
rLAMMPS lammps
angle_quartic.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Loukas D. Peristeras (Scienomics SARL)
[ based on angle_harmonic.cpp]
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include "angle_quartic.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
using
namespace
MathConst
;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleQuartic
::
AngleQuartic
(
LAMMPS
*
lmp
)
:
Angle
(
lmp
)
{}
/* ---------------------------------------------------------------------- */
AngleQuartic
::~
AngleQuartic
()
{
if
(
allocated
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
k2
);
memory
->
destroy
(
k3
);
memory
->
destroy
(
k4
);
memory
->
destroy
(
theta0
);
}
}
/* ---------------------------------------------------------------------- */
void
AngleQuartic
::
compute
(
int
eflag
,
int
vflag
)
{
int
i1
,
i2
,
i3
,
n
,
type
;
double
delx1
,
dely1
,
delz1
,
delx2
,
dely2
,
delz2
;
double
eangle
,
f1
[
3
],
f3
[
3
];
double
dtheta
,
dtheta2
,
dtheta3
,
dtheta4
,
tk
;
double
rsq1
,
rsq2
,
r1
,
r2
,
c
,
s
,
a
,
a11
,
a12
,
a22
;
eangle
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
0
;
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
int
**
anglelist
=
neighbor
->
anglelist
;
int
nanglelist
=
neighbor
->
nanglelist
;
int
nlocal
=
atom
->
nlocal
;
int
newton_bond
=
force
->
newton_bond
;
for
(
n
=
0
;
n
<
nanglelist
;
n
++
)
{
i1
=
anglelist
[
n
][
0
];
i2
=
anglelist
[
n
][
1
];
i3
=
anglelist
[
n
][
2
];
type
=
anglelist
[
n
][
3
];
// 1st bond
delx1
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
dely1
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
delz1
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
rsq1
=
delx1
*
delx1
+
dely1
*
dely1
+
delz1
*
delz1
;
r1
=
sqrt
(
rsq1
);
// 2nd bond
delx2
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
dely2
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
delz2
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
rsq2
=
delx2
*
delx2
+
dely2
*
dely2
+
delz2
*
delz2
;
r2
=
sqrt
(
rsq2
);
// angle (cos and sin)
c
=
delx1
*
delx2
+
dely1
*
dely2
+
delz1
*
delz2
;
c
/=
r1
*
r2
;
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
s
=
sqrt
(
1.0
-
c
*
c
);
if
(
s
<
SMALL
)
s
=
SMALL
;
s
=
1.0
/
s
;
// force & energy
dtheta
=
acos
(
c
)
-
theta0
[
type
];
dtheta2
=
dtheta
*
dtheta
;
dtheta3
=
dtheta2
*
dtheta
;
tk
=
2.0
*
k2
[
type
]
*
dtheta
+
3.0
*
k3
[
type
]
*
dtheta2
+
4.0
*
k4
[
type
]
*
dtheta3
;
if
(
eflag
)
{
dtheta4
=
dtheta3
*
dtheta
;
eangle
=
k2
[
type
]
*
dtheta2
+
k3
[
type
]
*
dtheta3
+
k4
[
type
]
*
dtheta4
;
}
a
=
-
tk
*
s
;
a11
=
a
*
c
/
rsq1
;
a12
=
-
a
/
(
r1
*
r2
);
a22
=
a
*
c
/
rsq2
;
f1
[
0
]
=
a11
*
delx1
+
a12
*
delx2
;
f1
[
1
]
=
a11
*
dely1
+
a12
*
dely2
;
f1
[
2
]
=
a11
*
delz1
+
a12
*
delz2
;
f3
[
0
]
=
a22
*
delx2
+
a12
*
delx1
;
f3
[
1
]
=
a22
*
dely2
+
a12
*
dely1
;
f3
[
2
]
=
a22
*
delz2
+
a12
*
delz1
;
// apply force to each of 3 atoms
if
(
newton_bond
||
i1
<
nlocal
)
{
f
[
i1
][
0
]
+=
f1
[
0
];
f
[
i1
][
1
]
+=
f1
[
1
];
f
[
i1
][
2
]
+=
f1
[
2
];
}
if
(
newton_bond
||
i2
<
nlocal
)
{
f
[
i2
][
0
]
-=
f1
[
0
]
+
f3
[
0
];
f
[
i2
][
1
]
-=
f1
[
1
]
+
f3
[
1
];
f
[
i2
][
2
]
-=
f1
[
2
]
+
f3
[
2
];
}
if
(
newton_bond
||
i3
<
nlocal
)
{
f
[
i3
][
0
]
+=
f3
[
0
];
f
[
i3
][
1
]
+=
f3
[
1
];
f
[
i3
][
2
]
+=
f3
[
2
];
}
if
(
evflag
)
ev_tally
(
i1
,
i2
,
i3
,
nlocal
,
newton_bond
,
eangle
,
f1
,
f3
,
delx1
,
dely1
,
delz1
,
delx2
,
dely2
,
delz2
);
}
}
/* ---------------------------------------------------------------------- */
void
AngleQuartic
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
nangletypes
;
memory
->
create
(
k2
,
n
+
1
,
"angle:k2"
);
memory
->
create
(
k3
,
n
+
1
,
"angle:k3"
);
memory
->
create
(
k4
,
n
+
1
,
"angle:k4"
);
memory
->
create
(
theta0
,
n
+
1
,
"angle:theta0"
);
memory
->
create
(
setflag
,
n
+
1
,
"angle:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
setflag
[
i
]
=
0
;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void
AngleQuartic
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
5
)
error
->
all
(
FLERR
,
"Incorrect args for angle coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
;
force
->
bounds
(
arg
[
0
],
atom
->
nangletypes
,
ilo
,
ihi
);
double
theta0_one
=
force
->
numeric
(
FLERR
,
arg
[
1
]);
double
k2_one
=
force
->
numeric
(
FLERR
,
arg
[
2
]);
double
k3_one
=
force
->
numeric
(
FLERR
,
arg
[
3
]);
double
k4_one
=
force
->
numeric
(
FLERR
,
arg
[
4
]);
// convert theta0 from degrees to radians
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
k2
[
i
]
=
k2_one
;
k3
[
i
]
=
k3_one
;
k4
[
i
]
=
k4_one
;
theta0
[
i
]
=
theta0_one
/
180.0
*
MY_PI
;
setflag
[
i
]
=
1
;
count
++
;
}
if
(
count
==
0
)
error
->
all
(
FLERR
,
"Incorrect args for angle coefficients"
);
}
/* ---------------------------------------------------------------------- */
double
AngleQuartic
::
equilibrium_angle
(
int
i
)
{
return
theta0
[
i
];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void
AngleQuartic
::
write_restart
(
FILE
*
fp
)
{
fwrite
(
&
k2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
k3
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
k4
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
theta0
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void
AngleQuartic
::
read_restart
(
FILE
*
fp
)
{
allocate
();
if
(
comm
->
me
==
0
)
{
fread
(
&
k2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
k3
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
k4
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
theta0
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
}
MPI_Bcast
(
&
k2
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
k3
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
k4
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
theta0
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
for
(
int
i
=
1
;
i
<=
atom
->
nangletypes
;
i
++
)
setflag
[
i
]
=
1
;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void
AngleQuartic
::
write_data
(
FILE
*
fp
)
{
for
(
int
i
=
1
;
i
<=
atom
->
nangletypes
;
i
++
)
fprintf
(
fp
,
"%d %g %g %g %g
\n
"
,
i
,
theta0
[
i
]
/
MY_PI
*
180.0
,
k2
[
i
],
k3
[
i
],
k4
[
i
]);
}
/* ---------------------------------------------------------------------- */
double
AngleQuartic
::
single
(
int
type
,
int
i1
,
int
i2
,
int
i3
)
{
double
**
x
=
atom
->
x
;
double
delx1
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
double
dely1
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
double
delz1
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx1
,
dely1
,
delz1
);
double
r1
=
sqrt
(
delx1
*
delx1
+
dely1
*
dely1
+
delz1
*
delz1
);
double
delx2
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
double
dely2
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
double
delz2
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx2
,
dely2
,
delz2
);
double
r2
=
sqrt
(
delx2
*
delx2
+
dely2
*
dely2
+
delz2
*
delz2
);
double
c
=
delx1
*
delx2
+
dely1
*
dely2
+
delz1
*
delz2
;
c
/=
r1
*
r2
;
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
double
dtheta
=
acos
(
c
)
-
theta0
[
type
];
double
dtheta2
=
dtheta
*
dtheta
;
double
dtheta3
=
dtheta2
*
dtheta
;
double
dtheta4
=
dtheta3
*
dtheta
;
return
k2
[
type
]
*
dtheta2
+
k3
[
type
]
*
dtheta3
+
k4
[
type
]
*
dtheta4
;
}
Event Timeline
Log In to Comment