Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90443330
dihedral_spherical.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 17:24
Size
31 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 17:24 (2 d)
Engine
blob
Format
Raw Data
Handle
22074661
Attached To
rLAMMPS lammps
dihedral_spherical.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Andrew Jewett (Caltech)
[ using code borrowed from Loukas D. Peristeras (Scienomics SARL)
and Paul Crozier (SNL) ]
------------------------------------------------------------------------- */
#include <mpi.h>
#include <cmath>
#include <cstdlib>
#include <cassert>
#include "atom.h"
#include "comm.h"
#include "neighbor.h"
#include "domain.h"
#include "force.h"
#include "pair.h"
#include "update.h"
#include "math_const.h"
#include "math_extra.h"
#include "memory.h"
#include "error.h"
#include "dihedral_spherical.h"
using
namespace
std
;
using
namespace
LAMMPS_NS
;
using
namespace
MathConst
;
using
namespace
MathExtra
;
/* ---------------------------------------------------------------------- */
DihedralSpherical
::
DihedralSpherical
(
LAMMPS
*
lmp
)
:
Dihedral
(
lmp
)
{}
/* ---------------------------------------------------------------------- */
DihedralSpherical
::~
DihedralSpherical
()
{
if
(
allocated
&&
!
copymode
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
nterms
);
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
{
if
(
Ccoeff
[
i
]
)
delete
[]
Ccoeff
[
i
];
if
(
phi_mult
[
i
]
)
delete
[]
phi_mult
[
i
];
if
(
phi_shift
[
i
]
)
delete
[]
phi_shift
[
i
];
if
(
phi_offset
[
i
]
)
delete
[]
phi_offset
[
i
];
if
(
theta1_mult
[
i
]
)
delete
[]
theta1_mult
[
i
];
if
(
theta1_shift
[
i
]
)
delete
[]
theta1_shift
[
i
];
if
(
theta1_offset
[
i
]
)
delete
[]
theta1_offset
[
i
];
if
(
theta2_mult
[
i
]
)
delete
[]
theta2_mult
[
i
];
if
(
theta2_shift
[
i
]
)
delete
[]
theta2_shift
[
i
];
if
(
theta2_offset
[
i
]
)
delete
[]
theta2_offset
[
i
];
}
delete
[]
Ccoeff
;
delete
[]
phi_mult
;
delete
[]
phi_shift
;
delete
[]
phi_offset
;
delete
[]
theta1_mult
;
delete
[]
theta1_shift
;
delete
[]
theta1_offset
;
delete
[]
theta2_mult
;
delete
[]
theta2_shift
;
delete
[]
theta2_offset
;
}
}
static
void
norm3safe
(
double
*
v
)
{
double
inv_scale
=
sqrt
(
v
[
0
]
*
v
[
0
]
+
v
[
1
]
*
v
[
1
]
+
v
[
2
]
*
v
[
2
]);
double
scale
=
1.0
;
if
(
inv_scale
>
0.0
)
scale
=
1.0
/
inv_scale
;
v
[
0
]
*=
scale
;
v
[
1
]
*=
scale
;
v
[
2
]
*=
scale
;
}
// --------------------------------------------
// ------- Calculate the dihedral angle -------
// --------------------------------------------
static
const
int
g_dim
=
3
;
static
double
Phi
(
double
const
*
x1
,
//array holding x,y,z coords atom 1
double
const
*
x2
,
// : : : : 2
double
const
*
x3
,
// : : : : 3
double
const
*
x4
,
// : : : : 4
Domain
*
domain
,
//<-periodic boundary information
double
*
vb12
,
//<-preallocated vector will store x2-x1
double
*
vb23
,
//<-preallocated vector will store x3-x2
double
*
vb34
,
//<-preallocated vector will store x4-x3
double
*
n123
,
//<-will store normal to plane x1,x2,x3
double
*
n234
)
//<-will store normal to plane x2,x3,x4
{
for
(
int
d
=
0
;
d
<
g_dim
;
++
d
)
{
vb12
[
d
]
=
x2
[
d
]
-
x1
[
d
];
// 1st bond
vb23
[
d
]
=
x3
[
d
]
-
x2
[
d
];
// 2nd bond
vb34
[
d
]
=
x4
[
d
]
-
x3
[
d
];
// 3rd bond
}
//Consider periodic boundary conditions:
domain
->
minimum_image
(
vb12
[
0
],
vb12
[
1
],
vb12
[
2
]);
domain
->
minimum_image
(
vb23
[
0
],
vb23
[
1
],
vb23
[
2
]);
domain
->
minimum_image
(
vb34
[
0
],
vb34
[
1
],
vb34
[
2
]);
//--- Compute the normal to the planes formed by atoms 1,2,3 and 2,3,4 ---
cross3
(
vb23
,
vb12
,
n123
);
// <- n123=vb23 x vb12
cross3
(
vb23
,
vb34
,
n234
);
// <- n234=vb23 x vb34
norm3safe
(
n123
);
norm3safe
(
n234
);
double
cos_phi
=
-
dot3
(
n123
,
n234
);
if
(
cos_phi
>
1.0
)
cos_phi
=
1.0
;
else
if
(
cos_phi
<
-
1.0
)
cos_phi
=
-
1.0
;
double
phi
=
acos
(
cos_phi
);
if
(
dot3
(
n123
,
vb34
)
>
0.0
)
{
phi
=
-
phi
;
//(Note: Negative dihedral angles are possible only in 3-D.)
phi
+=
MY_2PI
;
//<- This insure phi is always in the range 0 to 2*PI
}
return
phi
;
}
// DihedralSpherical::Phi()
/* ---------------------------------------------------------------------- */
void
DihedralSpherical
::
compute
(
int
eflag
,
int
vflag
)
{
int
i1
,
i2
,
i3
,
i4
,
n
,
type
;
double
edihedral
,
f1
[
3
],
f2
[
3
],
f3
[
3
],
f4
[
3
];
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
int
**
dihedrallist
=
neighbor
->
dihedrallist
;
int
ndihedrallist
=
neighbor
->
ndihedrallist
;
int
nlocal
=
atom
->
nlocal
;
int
newton_bond
=
force
->
newton_bond
;
// The dihedral angle "phi" is the angle between n123 and n234
// the planes defined by atoms i1,i2,i3, and i2,i3,i4.
//
// Definitions of vectors: vb12, vb23, vb34, perp12on23
// proj12on23, perp43on32, proj43on32
//
// Note: The positions of the 4 atoms are labeled x[i1], x[i2], x[i3], x[i4]
// (which are also vectors)
//
// proj12on23 proj34on23
// ---------> ----------->
//
//
//
// x[i2] x[i3]
// . __@----------vb23-------->@ .
// /|\ /| \ |
// | / \ |
// | / \ |
// perp12on23 / \ |
// | / \ perp34on23
// | vb12 \ |
// | / vb34 |
// | / \ |
// | / \ |
// | / \ |
// @ \ |
// _\| \|/
// x[i1] @
//
// x[i4]
//
double
vb12
[
g_dim
];
// displacement vector from atom i1 towards atom i2
// vb12[d] = x[i2][d] - x[i1][d] (for d=0,1,2)
double
vb23
[
g_dim
];
// displacement vector from atom i2 towards atom i3
// vb23[d] = x[i3][d] - x[i2][d] (for d=0,1,2)
double
vb34
[
g_dim
];
// displacement vector from atom i3 towards atom i4
// vb34[d] = x[i4][d] - x[i3][d] (for d=0,1,2)
// n123 & n234: These two unit vectors are normal to the planes
// defined by atoms 1,2,3 and 2,3,4.
double
n123
[
g_dim
];
//n123=vb23 x vb12 / |vb23 x vb12| ("x" is cross product)
double
n234
[
g_dim
];
//n234=vb23 x vb34 / |vb23 x vb34| ("x" is cross product)
// The next 4 vectors are needed to calculate dphi_dx = d phi / dx
double
proj12on23
[
g_dim
];
// proj12on23[d] = (vb23[d]/|vb23|) * dot3(vb12,vb23)/|vb12|*|vb23|
double
proj34on23
[
g_dim
];
// proj34on23[d] = (vb34[d]/|vb23|) * dot3(vb34,vb23)/|vb34|*|vb23|
double
perp12on23
[
g_dim
];
// perp12on23[d] = v12[d] - proj12on23[d]
double
perp34on23
[
g_dim
];
// perp34on23[d] = v34[d] - proj34on23[d]
edihedral
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
0
;
for
(
n
=
0
;
n
<
ndihedrallist
;
n
++
)
{
i1
=
dihedrallist
[
n
][
0
];
i2
=
dihedrallist
[
n
][
1
];
i3
=
dihedrallist
[
n
][
2
];
i4
=
dihedrallist
[
n
][
3
];
type
=
dihedrallist
[
n
][
4
];
// ------ Step 1: Compute the dihedral angle "phi" ------
//
// Phi() calculates the dihedral angle.
// This function also calculates the vectors:
// vb12, vb23, vb34, n123, and n234, which we will need later.
double
phi
=
Phi
(
x
[
i1
],
x
[
i2
],
x
[
i3
],
x
[
i4
],
domain
,
vb12
,
vb23
,
vb34
,
n123
,
n234
);
// Step 2: Compute the gradients of phi, theta1, theta2 with atom position:
// ===================== Step2a) phi dependence: ========================
//
// Gradient variables:
//
// dphi_dx1, dphi_dx2, dphi_dx3, dphi_dx4 are the gradients of phi with
// respect to the atomic positions of atoms i1, i2, i3, i4, respectively.
// As an example, consider dphi_dx1. The d'th element is:
double
dphi_dx1
[
g_dim
];
// d phi
double
dphi_dx2
[
g_dim
];
// dphi_dx1[d] = ---------- (partial derivatives)
double
dphi_dx3
[
g_dim
];
// d x[i1][d]
double
dphi_dx4
[
g_dim
];
//where d=0,1,2 corresponds to x,y,z (g_dim==3)
double
dot123
=
dot3
(
vb12
,
vb23
);
double
dot234
=
dot3
(
vb23
,
vb34
);
double
L23sqr
=
dot3
(
vb23
,
vb23
);
double
L23
=
sqrt
(
L23sqr
);
// (central bond length)
double
inv_L23sqr
=
0.0
;
double
inv_L23
=
0.0
;
if
(
L23sqr
!=
0.0
)
{
inv_L23sqr
=
1.0
/
L23sqr
;
inv_L23
=
1.0
/
L23
;
}
double
neg_inv_L23
=
-
inv_L23
;
double
dot123_over_L23sqr
=
dot123
*
inv_L23sqr
;
double
dot234_over_L23sqr
=
dot234
*
inv_L23sqr
;
for
(
int
d
=
0
;
d
<
g_dim
;
++
d
)
{
// See figure above for a visual definitions of these vectors:
proj12on23
[
d
]
=
vb23
[
d
]
*
dot123_over_L23sqr
;
proj34on23
[
d
]
=
vb23
[
d
]
*
dot234_over_L23sqr
;
perp12on23
[
d
]
=
vb12
[
d
]
-
proj12on23
[
d
];
perp34on23
[
d
]
=
vb34
[
d
]
-
proj34on23
[
d
];
}
// --- Compute the gradient vectors dphi/dx1 and dphi/dx4: ---
// These two gradients point in the direction of n123 and n234,
// and are scaled by the distances of atoms 1 and 4 from the central axis.
// Distance of atom 1 to central axis:
double
perp12on23_len
=
sqrt
(
dot3
(
perp12on23
,
perp12on23
));
// Distance of atom 4 to central axis:
double
perp34on23_len
=
sqrt
(
dot3
(
perp34on23
,
perp34on23
));
double
inv_perp12on23
=
0.0
;
if
(
perp12on23_len
!=
0.0
)
inv_perp12on23
=
1.0
/
perp12on23_len
;
double
inv_perp34on23
=
0.0
;
if
(
perp34on23_len
!=
0.0
)
inv_perp34on23
=
1.0
/
perp34on23_len
;
for
(
int
d
=
0
;
d
<
g_dim
;
++
d
)
{
dphi_dx1
[
d
]
=
n123
[
d
]
*
inv_perp12on23
;
dphi_dx4
[
d
]
=
n234
[
d
]
*
inv_perp34on23
;
}
// --- Compute the gradient vectors dphi/dx2 and dphi/dx3: ---
//
// This is more tricky because atoms 2 and 3 are shared by both planes
// 123 and 234 (the angle between which defines "phi"). Moving either
// one of these atoms effects both the 123 and 234 planes
// Both the 123 and 234 planes intersect with the plane perpendicular to the
// central bond axis (vb23). The two lines where these intersections occur
// will shift when you move either atom 2 or atom 3. The angle between
// these lines is the dihedral angle, phi. We can define four quantities:
// dphi123_dx2 is the change in "phi" due to the movement of the 123 plane
// ...as a result of moving atom 2.
// dphi234_dx2 is the change in "phi" due to the movement of the 234 plane
// ...as a result of moving atom 2.
// dphi123_dx3 is the change in "phi" due to the movement of the 123 plane
// ...as a result of moving atom 3.
// dphi234_dx3 is the change in "phi" due to the movement of the 234 plane
// ...as a result of moving atom 3.
double
proj12on23_len
=
dot123
*
inv_L23
;
double
proj34on23_len
=
dot234
*
inv_L23
;
// Interpretation:
//The magnitude of "proj12on23_len" is the length of the proj12on23 vector.
//The sign is positive if it points in the same direction as the central
//bond (vb23). Otherwise it is negative. The same goes for "proj34on23".
//(In the example figure in the comment above, both variables are positive.)
// The following 8 lines of code are used to calculate the gradient of phi
// with respect to the two "middle" atom positions (x[i2] and x[i3]).
// For an explanation of the formula used below, download the file
// "dihedral_table_2011-8-02.tar.gz" at the bottom of this post:
// http://lammps.sandia.gov/threads/msg22233.html
// Unpack it and go to this subdirectory:
// "supporting_information/doc/gradient_formula_explanation/"
double
dphi123_dx2_coef
=
neg_inv_L23
*
(
L23
+
proj12on23_len
);
double
dphi234_dx2_coef
=
inv_L23
*
proj34on23_len
;
double
dphi234_dx3_coef
=
neg_inv_L23
*
(
L23
+
proj34on23_len
);
double
dphi123_dx3_coef
=
inv_L23
*
proj12on23_len
;
for
(
int
d
=
0
;
d
<
g_dim
;
++
d
)
{
// Recall that the n123 and n234 plane normal vectors are proportional to
// the dphi/dx1 and dphi/dx2 gradients vectors
// It turns out we can save slightly more CPU cycles by expressing
// dphi/dx2 and dphi/dx3 as linear combinations of dphi/dx1 and dphi/dx2
// which we computed already (instead of n123 & n234).
dphi_dx2
[
d
]
=
dphi123_dx2_coef
*
dphi_dx1
[
d
]
+
dphi234_dx2_coef
*
dphi_dx4
[
d
];
dphi_dx3
[
d
]
=
dphi123_dx3_coef
*
dphi_dx1
[
d
]
+
dphi234_dx3_coef
*
dphi_dx4
[
d
];
}
// ============= Step2b) theta1 and theta2 dependence: =============
// --- Compute the gradient vectors dtheta1/dx1 and dtheta2/dx4: ---
// These two gradients point in the direction of n123 and n234,
// and are scaled by the distances of atoms 1 and 4 from the central axis.
// Distance of atom 1 to central axis:
double
dth1_dx1
[
g_dim
];
// d theta1 (partial
double
dth1_dx2
[
g_dim
];
// dth1_dx1[d] = ---------- derivative)
double
dth1_dx3
[
g_dim
];
// d x[i1][d]
//Note dth1_dx4 = 0
//Note dth2_dx1 = 0
double
dth2_dx2
[
g_dim
];
// d theta2 (partial
double
dth2_dx3
[
g_dim
];
// dth2_dx1[d] = ---------- derivative)
double
dth2_dx4
[
g_dim
];
// d x[i1][d]
//where d=0,1,2 corresponds to x,y,z (g_dim==3)
double
L12sqr
=
dot3
(
vb12
,
vb12
);
double
L12
=
sqrt
(
L12sqr
);
double
L34sqr
=
dot3
(
vb34
,
vb34
);
double
L34
=
sqrt
(
L34sqr
);
double
inv_L12sqr
=
0.0
;
double
inv_L12
=
0.0
;
double
inv_L34sqr
=
0.0
;
double
inv_L34
=
0.0
;
if
(
L12sqr
!=
0.0
)
{
inv_L12sqr
=
1.0
/
L12sqr
;
inv_L12
=
1.0
/
L12
;
}
if
(
L34sqr
!=
0.0
)
{
inv_L34sqr
=
1.0
/
L34sqr
;
inv_L34
=
1.0
/
L34
;
}
// The next 2 vectors are needed for calculating dth1_dx = d theta1 / d x
double
proj23on12
[
g_dim
];
// proj23on12[d] = (vb12[d]/|vb12|) * dot3(vb23,vb12)/|vb23|*|vb12|
double
perp23on12
[
g_dim
];
// perp23on12[d] = v23[d] - proj23on12[d]
// The next 2 vectors are needed for calculating dth2_dx = d theta2 / d x
double
proj23on34
[
g_dim
];
// proj23on34[d] = (vb23[d]/|vb34|) * dot3(vb23,vb34)/|vb23|*|vb34|
double
perp23on34
[
g_dim
];
// perp23on34[d] = v23[d] - proj23on34[d]
double
dot123_over_L12sqr
=
dot123
*
inv_L12sqr
;
double
dot234_over_L34sqr
=
dot234
*
inv_L34sqr
;
/* __ .
* proj23on12 .\ .
* . . proj23on34
* . .
* . .
* x[i2] . _./ x[i3]
* __@----------vb23-------->@
* /| / \ \
* / theta1 theta2 \
* / <-' `-> \
* / \
* / \
* vb12 \
* / vb34
* / \
* / \
* / \
* @ \
* _\|
* x[i1] @
*
* x[i4]
*/
for
(
int
d
=
0
;
d
<
g_dim
;
++
d
)
{
// See figure above for a visual definitions of these vectors:
proj23on12
[
d
]
=
vb12
[
d
]
*
dot123_over_L12sqr
;
proj23on34
[
d
]
=
vb34
[
d
]
*
dot234_over_L34sqr
;
perp23on12
[
d
]
=
vb23
[
d
]
-
proj23on12
[
d
];
perp23on34
[
d
]
=
vb23
[
d
]
-
proj23on34
[
d
];
}
double
perp23on12_len
=
sqrt
(
dot3
(
perp23on12
,
perp23on12
));
double
perp23on34_len
=
sqrt
(
dot3
(
perp23on34
,
perp23on34
));
double
inv_perp23on12
=
0.0
;
if
(
perp23on12_len
!=
0.0
)
inv_perp23on12
=
1.0
/
perp23on12_len
;
double
inv_perp23on34
=
0.0
;
if
(
perp23on34_len
!=
0.0
)
inv_perp23on34
=
1.0
/
perp23on34_len
;
double
coeff_dth1_dx1
=
-
inv_perp23on12
*
inv_L12
;
double
coeff_dth1_dx3
=
inv_perp12on23
*
inv_L23
;
double
coeff_dth2_dx2
=
-
inv_perp34on23
*
inv_L23
;
double
coeff_dth2_dx4
=
inv_perp23on34
*
inv_L34
;
for
(
int
d
=
0
;
d
<
g_dim
;
++
d
)
{
dth1_dx1
[
d
]
=
perp23on12
[
d
]
*
coeff_dth1_dx1
;
dth1_dx3
[
d
]
=
perp12on23
[
d
]
*
coeff_dth1_dx3
;
dth1_dx2
[
d
]
=
-
(
dth1_dx1
[
d
]
+
dth1_dx3
[
d
]);
//dtheta1_dx4 = 0
//dtheta2_dx1 = 0
dth2_dx2
[
d
]
=
perp34on23
[
d
]
*
coeff_dth2_dx2
;
dth2_dx4
[
d
]
=
perp23on34
[
d
]
*
coeff_dth2_dx4
;
dth2_dx3
[
d
]
=
-
(
dth2_dx2
[
d
]
+
dth2_dx4
[
d
]);
}
double
ct1
=
-
dot123
*
inv_L12
*
inv_L23
;
if
(
ct1
<
-
1.0
)
ct1
=
-
1.0
;
else
if
(
ct1
>
1.0
)
ct1
=
1.0
;
double
theta1
=
acos
(
ct1
);
double
ct2
=
-
dot234
*
inv_L23
*
inv_L34
;
if
(
ct2
<
-
1.0
)
ct2
=
-
1.0
;
else
if
(
ct2
>
1.0
)
ct2
=
1.0
;
double
theta2
=
acos
(
ct2
);
// - Step 3: Calculate the energy and force in the phi & theta1/2 directions
double
u
=
0.0
;
// u = energy
double
m_du_dth1
=
0.0
;
// m_du_dth1 = -du / d theta1
double
m_du_dth2
=
0.0
;
// m_du_dth2 = -du / d theta2
double
m_du_dphi
=
0.0
;
// m_du_dphi = -du / d phi
u
=
CalcGeneralizedForces
(
type
,
phi
,
theta1
,
theta2
,
&
m_du_dth1
,
&
m_du_dth2
,
&
m_du_dphi
);
if
(
eflag
)
edihedral
=
u
;
// ----- Step 4: Calculate the force direction in real space -----
// chain rule:
// d U d U d phi d U d theta1 d U d theta2
// -f = ----- = ----- * ----- + -------*------- + --------*--------
// d x d phi d x d theta1 d X d theta2 d X
for
(
int
d
=
0
;
d
<
g_dim
;
++
d
)
{
f1
[
d
]
=
m_du_dphi
*
dphi_dx1
[
d
]
+
m_du_dth1
*
dth1_dx1
[
d
];
//note: dth2_dx1[d]=0
f2
[
d
]
=
m_du_dphi
*
dphi_dx2
[
d
]
+
m_du_dth1
*
dth1_dx2
[
d
]
+
m_du_dth2
*
dth2_dx2
[
d
];
f3
[
d
]
=
m_du_dphi
*
dphi_dx3
[
d
]
+
m_du_dth1
*
dth1_dx3
[
d
]
+
m_du_dth2
*
dth2_dx3
[
d
];
f4
[
d
]
=
m_du_dphi
*
dphi_dx4
[
d
]
+
m_du_dth2
*
dth2_dx4
[
d
];
//note: dth1_dx4[d] = 0
}
// apply force to each of 4 atoms
if
(
newton_bond
||
i1
<
nlocal
)
{
f
[
i1
][
0
]
+=
f1
[
0
];
f
[
i1
][
1
]
+=
f1
[
1
];
f
[
i1
][
2
]
+=
f1
[
2
];
}
if
(
newton_bond
||
i2
<
nlocal
)
{
f
[
i2
][
0
]
+=
f2
[
0
];
f
[
i2
][
1
]
+=
f2
[
1
];
f
[
i2
][
2
]
+=
f2
[
2
];
}
if
(
newton_bond
||
i3
<
nlocal
)
{
f
[
i3
][
0
]
+=
f3
[
0
];
f
[
i3
][
1
]
+=
f3
[
1
];
f
[
i3
][
2
]
+=
f3
[
2
];
}
if
(
newton_bond
||
i4
<
nlocal
)
{
f
[
i4
][
0
]
+=
f4
[
0
];
f
[
i4
][
1
]
+=
f4
[
1
];
f
[
i4
][
2
]
+=
f4
[
2
];
}
if
(
evflag
)
ev_tally
(
i1
,
i2
,
i3
,
i4
,
nlocal
,
newton_bond
,
edihedral
,
f1
,
f3
,
f4
,
vb12
[
0
],
vb12
[
1
],
vb12
[
2
],
vb23
[
0
],
vb23
[
1
],
vb23
[
2
],
vb34
[
0
],
vb34
[
1
],
vb34
[
2
]);
}
}
// void DihedralSpherical::compute()
// --- CalcGeneralizedForces() ---
// --- Calculate the energy as a function of theta1, theta2, and phi ---
// --- as well as its derivatives (with respect to theta1, theta2, and phi) ---
// The code above above is sufficiently general that it can work with any
// any function of the angles theta1, theta2, and phi. However the
// function below calculates the energy and force according to this specific
// formula:
//
// E(\theta_1,\theta_2,\phi) =
// \sum_{i=1}^N C_i \Theta_{1i}(\theta_1) \Theta_{2i}(\theta_2) \Phi_i(\phi)
// where:
// \Theta_{1i}(\theta_1) = cos((\theta_1-a_i)K_i) + u_i
// \Theta_{2i}(\theta_2) = cos((\theta_2-b_i)L_i) + v_i
// \Phi_i(\phi) = cos((\phi - c_i)M_i) + w_i
double
DihedralSpherical
::
CalcGeneralizedForces
(
int
type
,
double
phi
,
double
theta1
,
double
theta2
,
double
*
m_du_dth1
,
double
*
m_du_dth2
,
double
*
m_du_dphi
)
{
double
energy
=
0.0
;
assert
(
m_du_dphi
&&
m_du_dphi
&&
m_du_dphi
);
*
m_du_dphi
=
0.0
;
*
m_du_dth1
=
0.0
;
*
m_du_dth2
=
0.0
;
int
i
=
type
;
for
(
int
j
=
0
;
j
<
nterms
[
i
];
j
++
)
{
// (It's common that some terms in an expansion have phi_multi[i][j]=0.
// When this happens, perhaps it will speed up the calculation to avoid
// unnecessary calls to the cos() and sin() functions. Check this below)
// I also check whether theta1_mult[i][j] and theta2_mult[i][j] are 0.
double
cp
=
1.0
;
double
sp
=
0.0
;
if
(
phi_mult
[
i
][
j
]
!=
0.0
)
{
double
p
=
phi_mult
[
i
][
j
]
*
(
phi
-
phi_shift
[
i
][
j
]);
cp
=
cos
(
p
);
sp
=
sin
(
p
);
}
double
ct1
=
1.0
;
double
st1
=
0.0
;
if
(
theta1_mult
[
i
][
j
]
!=
0.0
)
{
double
t1
=
theta1_mult
[
i
][
j
]
*
(
theta1
-
theta1_shift
[
i
][
j
]);
ct1
=
cos
(
t1
);
st1
=
sin
(
t1
);
}
double
ct2
=
1.0
;
double
st2
=
0.0
;
if
(
theta2_mult
[
i
][
j
]
!=
0.0
)
{
double
t2
=
theta2_mult
[
i
][
j
]
*
(
theta2
-
theta2_shift
[
i
][
j
]);
ct2
=
cos
(
t2
);
st2
=
sin
(
t2
);
}
energy
+=
Ccoeff
[
i
][
j
]
*
(
phi_offset
[
i
][
j
]
-
cp
)
*
(
theta1_offset
[
i
][
j
]
-
ct1
)
*
(
theta2_offset
[
i
][
j
]
-
ct2
);
// Forces:
*
m_du_dphi
+=
-
Ccoeff
[
i
][
j
]
*
sp
*
phi_mult
[
i
][
j
]
*
(
theta1_offset
[
i
][
j
]
-
ct1
)
*
(
theta2_offset
[
i
][
j
]
-
ct2
);
*
m_du_dth1
+=
-
Ccoeff
[
i
][
j
]
*
(
phi_offset
[
i
][
j
]
-
cp
)
*
st1
*
theta1_mult
[
i
][
j
]
*
(
theta2_offset
[
i
][
j
]
-
ct2
);
*
m_du_dth2
+=
-
Ccoeff
[
i
][
j
]
*
(
phi_offset
[
i
][
j
]
-
cp
)
*
(
theta1_offset
[
i
][
j
]
-
ct1
)
*
st2
*
theta2_mult
[
i
][
j
];
// Things to consider later:
// To speed up the computation, one could try to simplify the expansion:
// IE by factoring out common terms, and precomputing trig functions once:
// cos(K*theta1), sin(K*theta1),
// cos(L*theta2), sin(L*theta2), and
// cos(M*phi), sin(M*phi)
// Also: For integer K,L,M, the trig functions cos(M*phi) and sin(M*phi)
// can be calculated more efficiently using polynomials of
// cos(phi) and sin(phi)
}
//for (int j = 0; j < nterms[i]; j++) {
return
energy
;
}
//CalcGeneralizedForces()
void
DihedralSpherical
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ndihedraltypes
;
memory
->
create
(
nterms
,
n
+
1
,
"dihedral:nterms"
);
Ccoeff
=
new
double
*
[
n
+
1
];
phi_mult
=
new
double
*
[
n
+
1
];
phi_shift
=
new
double
*
[
n
+
1
];
phi_offset
=
new
double
*
[
n
+
1
];
theta1_mult
=
new
double
*
[
n
+
1
];
theta1_shift
=
new
double
*
[
n
+
1
];
theta1_offset
=
new
double
*
[
n
+
1
];
theta2_mult
=
new
double
*
[
n
+
1
];
theta2_shift
=
new
double
*
[
n
+
1
];
theta2_offset
=
new
double
*
[
n
+
1
];
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
{
Ccoeff
[
i
]
=
NULL
;
phi_mult
[
i
]
=
NULL
;
phi_shift
[
i
]
=
NULL
;
phi_offset
[
i
]
=
NULL
;
theta1_mult
[
i
]
=
NULL
;
theta1_shift
[
i
]
=
NULL
;
theta1_offset
[
i
]
=
NULL
;
theta2_mult
[
i
]
=
NULL
;
theta2_shift
[
i
]
=
NULL
;
theta2_offset
[
i
]
=
NULL
;
}
memory
->
create
(
setflag
,
n
+
1
,
"dihedral:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
setflag
[
i
]
=
0
;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void
DihedralSpherical
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
<
4
)
error
->
all
(
FLERR
,
"Incorrect args for dihedral coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
;
force
->
bounds
(
arg
[
0
],
atom
->
ndihedraltypes
,
ilo
,
ihi
);
int
nterms_one
=
force
->
inumeric
(
FLERR
,
arg
[
1
]);
if
(
nterms_one
<
1
)
error
->
all
(
FLERR
,
"Incorrect number of terms arg for dihedral coefficients"
);
if
(
2
+
10
*
nterms_one
<
narg
)
error
->
all
(
FLERR
,
"Incorrect number of arguments for dihedral coefficients"
);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
nterms
[
i
]
=
nterms_one
;
Ccoeff
[
i
]
=
new
double
[
nterms_one
];
phi_mult
[
i
]
=
new
double
[
nterms_one
];
phi_shift
[
i
]
=
new
double
[
nterms_one
];
phi_offset
[
i
]
=
new
double
[
nterms_one
];
theta1_mult
[
i
]
=
new
double
[
nterms_one
];
theta1_shift
[
i
]
=
new
double
[
nterms_one
];
theta1_offset
[
i
]
=
new
double
[
nterms_one
];
theta2_mult
[
i
]
=
new
double
[
nterms_one
];
theta2_shift
[
i
]
=
new
double
[
nterms_one
];
theta2_offset
[
i
]
=
new
double
[
nterms_one
];
for
(
int
j
=
0
;
j
<
nterms_one
;
j
++
)
{
int
offset
=
1
+
10
*
j
;
Ccoeff
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
1
]);
phi_mult
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
2
]);
phi_shift
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
3
])
*
MY_PI
/
180.0
;
phi_offset
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
4
]);
theta1_mult
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
5
]);
theta1_shift
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
6
])
*
MY_PI
/
180.0
;
theta1_offset
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
7
]);
theta2_mult
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
8
]);
theta2_shift
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
9
])
*
MY_PI
/
180.0
;
theta2_offset
[
i
][
j
]
=
force
->
numeric
(
FLERR
,
arg
[
offset
+
10
]);
}
setflag
[
i
]
=
1
;
count
++
;
}
if
(
count
==
0
)
error
->
all
(
FLERR
,
"Incorrect args for dihedral coefficients"
);
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void
DihedralSpherical
::
write_restart
(
FILE
*
fp
)
{
fwrite
(
&
nterms
[
1
],
sizeof
(
int
),
atom
->
ndihedraltypes
,
fp
);
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
{
fwrite
(
Ccoeff
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
phi_mult
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
phi_shift
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
phi_offset
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
theta1_mult
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
theta1_shift
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
theta1_offset
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
theta2_mult
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
theta2_shift
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fwrite
(
theta2_offset
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
}
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void
DihedralSpherical
::
read_restart
(
FILE
*
fp
)
{
allocate
();
if
(
comm
->
me
==
0
)
fread
(
&
nterms
[
1
],
sizeof
(
int
),
atom
->
ndihedraltypes
,
fp
);
MPI_Bcast
(
&
nterms
[
1
],
atom
->
ndihedraltypes
,
MPI_INT
,
0
,
world
);
// allocate
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
{
Ccoeff
[
i
]
=
new
double
[
nterms
[
i
]];
phi_mult
[
i
]
=
new
double
[
nterms
[
i
]];
phi_shift
[
i
]
=
new
double
[
nterms
[
i
]];
phi_offset
[
i
]
=
new
double
[
nterms
[
i
]];
theta1_mult
[
i
]
=
new
double
[
nterms
[
i
]];
theta1_shift
[
i
]
=
new
double
[
nterms
[
i
]];
theta1_offset
[
i
]
=
new
double
[
nterms
[
i
]];
theta2_mult
[
i
]
=
new
double
[
nterms
[
i
]];
theta2_shift
[
i
]
=
new
double
[
nterms
[
i
]];
theta2_offset
[
i
]
=
new
double
[
nterms
[
i
]];
}
if
(
comm
->
me
==
0
)
{
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
{
fread
(
Ccoeff
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
phi_mult
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
phi_shift
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
phi_offset
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
theta1_mult
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
theta1_shift
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
theta1_offset
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
theta2_mult
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
theta2_shift
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
fread
(
theta2_offset
[
i
],
sizeof
(
double
),
nterms
[
i
],
fp
);
}
}
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
{
MPI_Bcast
(
Ccoeff
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
phi_mult
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
phi_shift
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
phi_offset
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
theta1_mult
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
theta1_shift
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
theta1_offset
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
theta2_mult
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
theta2_shift
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
theta2_offset
[
i
],
nterms
[
i
],
MPI_DOUBLE
,
0
,
world
);
}
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
setflag
[
i
]
=
1
;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void
DihedralSpherical
::
write_data
(
FILE
*
fp
)
{
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
{
fprintf
(
fp
,
"%d %d "
,
i
,
nterms
[
i
]);
for
(
int
j
=
0
;
j
<
nterms
[
i
];
j
++
)
{
fprintf
(
fp
,
"%g %g %g %g %g %g %g %g %g "
,
phi_mult
[
i
][
j
],
phi_shift
[
i
][
j
],
phi_offset
[
i
][
j
],
theta1_mult
[
i
][
j
],
theta1_shift
[
i
][
j
],
theta1_offset
[
i
][
j
],
theta2_mult
[
i
][
j
],
theta2_shift
[
i
][
j
],
theta2_offset
[
i
][
j
]);
}
fprintf
(
fp
,
"
\n
"
);
}
}
// Not needed?
// single() calculates the dihedral-angle energy of atoms i1, i2, i3, i4.
//double DihedralSpherical::single(int type, int i1, int i2, int i3, int i4)
//{
// //variables we will need
// double vb12[g_dim];
// double vb23[g_dim];
// double vb34[g_dim];
//
// // Some functions calculate numbers we don't care about. Store in variables:
// double n123[g_dim]; // (will be ignored)
// double n234[g_dim]; // (will be ignored)
// double m_du_dth1; // (will be ignored)
// double m_du_dth2; // (will be ignored)
// double m_du_dphi; // (will be ignored)
//
// double **x = atom->x;
//
// // Calculate the 4-body angle: phi
// double phi = Phi(x[i1], x[i2], x[i3], x[i4], domain,
// vb12, vb23, vb34, n123, n234);
//
// // Calculate the 3-body angles: theta1 and theta2
// double L12 = sqrt(dot3(vb12, vb12));
// double L23 = sqrt(dot3(vb23, vb23));
// double L34 = sqrt(dot3(vb34, vb34));
//
// double ct1 = -dot3(vb12, vb23) / (L12 * L23);
// if (ct1 < -1.0) ct1 = -1.0;
// else if (ct1 > 1.0) ct1 = 1.0;
// double theta1 = acos(ct1);
//
// double ct2 = -dot3(vb23, vb34) / (L23 * L34);
// if (ct2 < -1.0) ct2 = -1.0;
// else if (ct2 > 1.0) ct2 = 1.0;
// double theta2 = acos(ct2);
//
// double u = CalcGeneralizedForces(type,
// phi, theta1, theta2,
// &m_du_dth1, &m_du_dth2, &m_du_dphi);
// return u;
//}
Event Timeline
Log In to Comment