Page MenuHomec4science

pair_eim_omp.cpp
No OneTemporary

File Metadata

Created
Mon, Sep 2, 08:13

pair_eim_omp.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
This software is distributed under the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include <math.h>
#include <string.h>
#include "pair_eim_omp.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "suffix.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
PairEIMOMP::PairEIMOMP(LAMMPS *lmp) :
PairEIM(lmp), ThrOMP(lmp, THR_PAIR)
{
suffix_flag |= Suffix::OMP;
respa_enable = 0;
}
/* ---------------------------------------------------------------------- */
void PairEIMOMP::compute(int eflag, int vflag)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
} else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
const int nall = atom->nlocal + atom->nghost;
const int nthreads = comm->nthreads;
const int inum = list->inum;
// grow energy and fp arrays if necessary
// need to be atom->nmax in length
if (atom->nmax > nmax) {
memory->destroy(rho);
memory->destroy(fp);
nmax = atom->nmax;
memory->create(rho,nthreads*nmax,"pair:rho");
memory->create(fp,nthreads*nmax,"pair:fp");
}
#if defined(_OPENMP)
#pragma omp parallel default(none) shared(eflag,vflag)
#endif
{
int ifrom, ito, tid;
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
ThrData *thr = fix->get_thr(tid);
thr->timer(Timer::START);
ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr);
if (force->newton_pair)
thr->init_eim(nall, rho, fp);
else
thr->init_eim(atom->nlocal, rho, fp);
if (evflag) {
if (eflag) {
if (force->newton_pair) eval<1,1,1>(ifrom, ito, thr);
else eval<1,1,0>(ifrom, ito, thr);
} else {
if (force->newton_pair) eval<1,0,1>(ifrom, ito, thr);
else eval<1,0,0>(ifrom, ito, thr);
}
} else {
if (force->newton_pair) eval<0,0,1>(ifrom, ito, thr);
else eval<0,0,0>(ifrom, ito, thr);
}
thr->timer(Timer::PAIR);
reduce_thr(this, eflag, vflag, thr);
} // end of omp parallel region
}
template <int EVFLAG, int EFLAG, int NEWTON_PAIR>
void PairEIMOMP::eval(int iifrom, int iito, ThrData * const thr)
{
int i,j,ii,jj,m,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
double rsq,r,p,rhoip,rhojp,phip,phi,coul,coulp,recip,psip;
double *coeff;
int *ilist,*jlist,*numneigh,**firstneigh;
evdwl = 0.0;
const dbl3_t * _noalias const x = (dbl3_t *) atom->x[0];
dbl3_t * _noalias const f = (dbl3_t *) thr->get_f()[0];
double * const rho_t = thr->get_rho();
double * const fp_t = thr->get_fp();
const int tid = thr->get_tid();
const int nthreads = comm->nthreads;
const int * _noalias const type = atom->type;
const int nlocal = atom->nlocal;
const int nall = nlocal + atom->nghost;
double fxtmp,fytmp,fztmp;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// rho = density at each atom
// loop over neighbors of my atoms
for (ii = iifrom; ii < iito; ii++) {
i = ilist[ii];
xtmp = x[i].x;
ytmp = x[i].y;
ztmp = x[i].z;
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = type[j];
delx = xtmp - x[j].x;
dely = ytmp - x[j].y;
delz = ztmp - x[j].z;
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutforcesq[itype][jtype]) {
p = sqrt(rsq)*rdr + 1.0;
m = static_cast<int> (p);
m = MIN(m,nr-1);
p -= m;
p = MIN(p,1.0);
coeff = Fij_spline[type2Fij[itype][jtype]][m];
rho_t[i] += ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
if (NEWTON_PAIR || j < nlocal) {
coeff = Fij_spline[type2Fij[jtype][itype]][m];
rho_t[j] += ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
}
}
}
}
// wait until all threads are done with computation
sync_threads();
// communicate and sum densities
if (NEWTON_PAIR) {
// reduce per thread density
thr->timer(Timer::PAIR);
data_reduce_thr(rho, nall, nthreads, 1, tid);
// wait until reduction is complete
sync_threads();
#if defined(_OPENMP)
#pragma omp master
#endif
{
rhofp = 1;
comm->reverse_comm_pair(this);
}
} else {
thr->timer(Timer::PAIR);
data_reduce_thr(rho, nlocal, nthreads, 1, tid);
// wait until reduction is complete
sync_threads();
}
#if defined(_OPENMP)
#pragma omp master
#endif
{
rhofp = 1;
comm->forward_comm_pair(this);
}
// wait until master is finished communicating
sync_threads();
for (ii = iifrom; ii < iito; ii++) {
i = ilist[ii];
xtmp = x[i].x;
ytmp = x[i].y;
ztmp = x[i].z;
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = type[j];
delx = xtmp - x[j].x;
dely = ytmp - x[j].y;
delz = ztmp - x[j].z;
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutforcesq[itype][jtype]) {
p = sqrt(rsq)*rdr + 1.0;
m = static_cast<int> (p);
m = MIN(m,nr-1);
p -= m;
p = MIN(p,1.0);
coeff = Gij_spline[type2Gij[itype][jtype]][m];
fp_t[i] += rho[j]*(((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6]);
if (NEWTON_PAIR || j < nlocal) {
fp_t[j] += rho[i]*(((coeff[3]*p + coeff[4])*p + coeff[5])*p +
coeff[6]);
}
}
}
}
// wait until all threads are done with computation
sync_threads();
// communicate and sum modified densities
if (NEWTON_PAIR) {
// reduce per thread density
thr->timer(Timer::PAIR);
data_reduce_thr(fp, nall, nthreads, 1, tid);
// wait until reduction is complete
sync_threads();
#if defined(_OPENMP)
#pragma omp master
#endif
{
rhofp = 2;
comm->reverse_comm_pair(this);
}
} else {
thr->timer(Timer::PAIR);
data_reduce_thr(fp, nlocal, nthreads, 1, tid);
// wait until reduction is complete
sync_threads();
}
#if defined(_OPENMP)
#pragma omp master
#endif
{
rhofp = 2;
comm->forward_comm_pair(this);
}
// wait until master is finished communicating
sync_threads();
for (ii = iifrom; ii < iito; ii++) {
i = ilist[ii];
itype = type[i];
if (EFLAG) {
phi = 0.5*rho[i]*fp[i];
e_tally_thr(this, i, i, nlocal, NEWTON_PAIR, phi, 0.0, thr);
}
}
// compute forces on each atom
// loop over neighbors of my atoms
for (ii = iifrom; ii < iito; ii++) {
i = ilist[ii];
xtmp = x[i].x;
ytmp = x[i].y;
ztmp = x[i].z;
itype = type[i];
fxtmp = fytmp = fztmp = 0.0;
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = type[j];
delx = xtmp - x[j].x;
dely = ytmp - x[j].y;
delz = ztmp - x[j].z;
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutforcesq[itype][jtype]) {
r = sqrt(rsq);
p = r*rdr + 1.0;
m = static_cast<int> (p);
m = MIN(m,nr-1);
p -= m;
p = MIN(p,1.0);
// rhoip = derivative of (density at atom j due to atom i)
// rhojp = derivative of (density at atom i due to atom j)
// phi = pair potential energy
// phip = phi'
coeff = Fij_spline[type2Fij[jtype][itype]][m];
rhoip = (coeff[0]*p + coeff[1])*p + coeff[2];
coeff = Fij_spline[type2Fij[itype][jtype]][m];
rhojp = (coeff[0]*p + coeff[1])*p + coeff[2];
coeff = phiij_spline[type2phiij[itype][jtype]][m];
phip = (coeff[0]*p + coeff[1])*p + coeff[2];
phi = ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
coeff = Gij_spline[type2Gij[itype][jtype]][m];
coul = ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
coulp = (coeff[0]*p + coeff[1])*p + coeff[2];
psip = phip + (rho[i]*rho[j]-q0[itype]*q0[jtype])*coulp +
fp[i]*rhojp + fp[j]*rhoip;
recip = 1.0/r;
fpair = -psip*recip;
fxtmp += delx*fpair;
fytmp += dely*fpair;
fztmp += delz*fpair;
if (NEWTON_PAIR || j < nlocal) {
f[j].x -= delx*fpair;
f[j].y -= dely*fpair;
f[j].z -= delz*fpair;
}
if (EFLAG) evdwl = phi-q0[itype]*q0[jtype]*coul;
if (EVFLAG) ev_tally_thr(this, i,j,nlocal,NEWTON_PAIR,
evdwl,0.0,fpair,delx,dely,delz,thr);
}
}
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
}
}
/* ---------------------------------------------------------------------- */
double PairEIMOMP::memory_usage()
{
double bytes = memory_usage_thr();
bytes += PairEIM::memory_usage();
return bytes;
}

Event Timeline