Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90486773
reaxc_init_md.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 2, 02:45
Size
29 KB
Mime Type
text/x-c
Expires
Mon, Nov 4, 02:45 (2 d)
Engine
blob
Format
Raw Data
Handle
22083292
Attached To
rLAMMPS lammps
reaxc_init_md.cpp
View Options
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, hmaktulga@lbl.gov
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
Please cite the related publication:
H. M. Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama,
"Parallel Reactive Molecular Dynamics: Numerical Methods and
Algorithmic Techniques", Parallel Computing, in press.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "pair_reax_c.h"
#if defined(PURE_REAX)
#include "init_md.h"
#include "allocate.h"
#include "box.h"
#include "comm_tools.h"
#include "forces.h"
#include "grid.h"
#include "integrate.h"
#include "io_tools.h"
#include "list.h"
#include "lookup.h"
#include "neighbors.h"
#include "random.h"
#include "reset_tools.h"
#include "system_props.h"
#include "tool_box.h"
#include "vector.h"
#elif defined(LAMMPS_REAX)
#include "reaxc_init_md.h"
#include "reaxc_allocate.h"
#include "reaxc_forces.h"
#include "reaxc_io_tools.h"
#include "reaxc_list.h"
#include "reaxc_lookup.h"
#include "reaxc_reset_tools.h"
#include "reaxc_system_props.h"
#include "reaxc_tool_box.h"
#include "reaxc_vector.h"
#endif
#if defined(PURE_REAX)
/************************ initialize system ************************/
int Reposition_Atoms( reax_system *system, control_params *control,
simulation_data *data, mpi_datatypes *mpi_data,
char *msg )
{
int i;
rvec dx;
/* reposition atoms */
if( control->reposition_atoms == 0 ) { //fit atoms to periodic box
rvec_MakeZero( dx );
}
else if( control->reposition_atoms == 1 ) { //put center of mass to center
rvec_Scale( dx, 0.5, system->big_box.box_norms );
rvec_ScaledAdd( dx, -1., data->xcm );
}
else if( control->reposition_atoms == 2 ) { //put center of mass to origin
rvec_Scale( dx, -1., data->xcm );
}
else {
strcpy( msg, "reposition_atoms: invalid option" );
return FAILURE;
}
for( i = 0; i < system->n; ++i )
// Inc_on_T3_Gen( system->my_atoms[i].x, dx, &(system->big_box) );
rvec_Add( system->my_atoms[i].x, dx );
return SUCCESS;
}
void Generate_Initial_Velocities( reax_system *system, real T )
{
int i;
real m, scale, norm;
if( T <= 0.1 ) {
for( i = 0; i < system->n; i++ )
rvec_MakeZero( system->my_atoms[i].v );
}
else {
Randomize();
for( i = 0; i < system->n; i++ ) {
rvec_Random( system->my_atoms[i].v );
norm = rvec_Norm_Sqr( system->my_atoms[i].v );
m = system->reax_param.sbp[ system->my_atoms[i].type ].mass;
scale = sqrt( m * norm / (3.0 * K_B * T) );
rvec_Scale( system->my_atoms[i].v, 1./scale, system->my_atoms[i].v );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
// fprintf( stderr, "scale = %f\n", scale );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
}
}
}
int Init_System( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
{
int i;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, mpi_data->world );
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
#endif
Bin_My_Atoms( system, &(workspace->realloc) );
Reorder_My_Atoms( system, workspace );
/* estimate N and total capacity */
for( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = 0;
system->max_recved = 0;
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Estimate_Boundary_Atoms, Unpack_Estimate_Message, 1 );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
/* estimate numH and Hcap */
system->numH = 0;
if( control->hbond_cut > 0 )
for( i = 0; i < system->n; ++i ) {
atom = &(system->my_atoms[i]);
if( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
atom->Hindex = system->numH++;
else atom->Hindex = -1;
}
system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
//Allocate_System( system, system->local_cap, system->total_cap, msg );
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
#endif
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// return FAILURE;
/* initialize velocities so that desired init T can be attained */
if( !control->restart || (control->restart && control->random_vel) )
Generate_Initial_Velocities( system, control->T_init );
return SUCCESS;
}
/************************ initialize simulation data ************************/
int Init_Simulation_Data( reax_system *system, control_params *control,
simulation_data *data, mpi_datatypes *mpi_data,
char *msg )
{
Reset_Simulation_Data( data, control->virial );
if( !control->restart )
data->step = data->prev_steps = 0;
Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
switch( control->ensemble ){
case NVE:
data->N_f = 3 * system->bigN;
Evolve = Velocity_Verlet_NVE;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Berendsen_NVT;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
//return FAILURE;
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
if( !control->restart || (control->restart && control->random_vel) ) {
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Evolve = Velocity_Verlet_Berendsen_NPT;
if( !control->restart )
Reset_Pressures( data );
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Evolve = Velocity_Verlet_Berendsen_NPT;
if( !control->restart )
Reset_Pressures( data );
break;
case NPT: /* Anisotropic NPT */
strcpy( msg, "init_simulation_data: option not yet implemented" );
return FAILURE;
data->N_f = 3 * system->bigN + 9;
Evolve = Velocity_Verlet_Berendsen_NPT;
/*if( !control->restart ) {
data->therm.G_xi = control->Tau_T *
(2.0 * data->my_en.e_Kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->iso_bar.eps = 0.33333 * log(system->box.volume);
data->inv_W = 1.0 /
( data->N_f * K_B * control->T * SQR(control->Tau_P) );
Compute_Pressure( system, control, data, out_control );
}*/
break;
default:
strcpy( msg, "init_simulation_data: ensemble not recognized" );
return FAILURE;
}
/* initialize the timer(s) */
MPI_Barrier( mpi_data->world ); // wait for everyone to come here
if( system->my_rank == MASTER_NODE ) {
data->timing.start = Get_Time( );
#if defined(LOG_PERFORMANCE)
Reset_Timing( &data->timing );
#endif
}
#if defined(DEBUG)
fprintf( stderr, "data->N_f: %8.3f\n", data->N_f );
#endif
return SUCCESS;
}
#elif defined(LAMMPS_REAX)
int Init_System( reax_system *system, control_params *control, char *msg )
{
int i;
reax_atom *atom;
/* determine the local and total capacity */
system->local_cap = MAX( (int)(system->n * SAFE_ZONE), MIN_CAP );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
/* estimate numH and Hcap */
system->numH = 0;
if( control->hbond_cut > 0 )
for( i = 0; i < system->n; ++i ) {
atom = &(system->my_atoms[i]);
if( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
atom->Hindex = system->numH++;
else atom->Hindex = -1;
}
system->Hcap = (int)(MAX( system->numH * SAFER_ZONE, MIN_CAP ));
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
#endif
return SUCCESS;
}
int Init_Simulation_Data( reax_system *system, control_params *control,
simulation_data *data, char *msg )
{
Reset_Simulation_Data( data, control->virial );
/* initialize the timer(s) */
if( system->my_rank == MASTER_NODE ) {
data->timing.start = Get_Time( );
#if defined(LOG_PERFORMANCE)
Reset_Timing( &data->timing );
#endif
}
//if( !control->restart )
data->step = data->prev_steps = 0;
return SUCCESS;
}
#endif
/************************ initialize workspace ************************/
/* Initialize Taper params */
void Init_Taper( control_params *control, storage *workspace, MPI_Comm comm )
{
real d1, d7;
real swa, swa2, swa3;
real swb, swb2, swb3;
swa = control->nonb_low;
swb = control->nonb_cut;
if( fabs( swa ) > 0.01 )
fprintf( stderr, "Warning: non-zero lower Taper-radius cutoff\n" );
if( swb < 0 ) {
fprintf( stderr, "Negative upper Taper-radius cutoff\n" );
MPI_Abort( comm, INVALID_INPUT );
}
else if( swb < 5 )
fprintf( stderr, "Warning: very low Taper-radius cutoff: %f\n", swb );
d1 = swb - swa;
d7 = pow( d1, 7.0 );
swa2 = SQR( swa );
swa3 = CUBE( swa );
swb2 = SQR( swb );
swb3 = CUBE( swb );
workspace->Tap[7] = 20.0 / d7;
workspace->Tap[6] = -70.0 * (swa + swb) / d7;
workspace->Tap[5] = 84.0 * (swa2 + 3.0*swa*swb + swb2) / d7;
workspace->Tap[4] = -35.0 * (swa3 + 9.0*swa2*swb + 9.0*swa*swb2 + swb3 ) / d7;
workspace->Tap[3] = 140.0 * (swa3*swb + 3.0*swa2*swb2 + swa*swb3 ) / d7;
workspace->Tap[2] =-210.0 * (swa3*swb2 + swa2*swb3) / d7;
workspace->Tap[1] = 140.0 * swa3 * swb3 / d7;
workspace->Tap[0] = (-35.0*swa3*swb2*swb2 + 21.0*swa2*swb3*swb2 +
7.0*swa*swb3*swb3 + swb3*swb3*swb ) / d7;
}
int Init_Workspace( reax_system *system, control_params *control,
storage *workspace, MPI_Comm comm, char *msg )
{
int ret;
ret = Allocate_Workspace( system, control, workspace,
system->local_cap, system->total_cap, comm, msg );
if( ret != SUCCESS )
return ret;
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, workspace, comm );
return SUCCESS;
}
/************** setup communication data structures **************/
int Init_MPI_Datatypes( reax_system *system, storage *workspace,
mpi_datatypes *mpi_data, MPI_Comm comm, char *msg )
{
#if defined(PURE_REAX)
int i, block[11];
MPI_Aint base, disp[11];
MPI_Datatype type[11];
mpi_atom sample;
boundary_atom b_sample;
restart_atom r_sample;
rvec rvec_sample;
rvec2 rvec2_sample;
#endif
/* setup the world */
mpi_data->world = comm;
MPI_Comm_size( comm, &(system->wsize) );
#if defined(PURE_REAX)
/* init mpi buffers */
mpi_data->in1_buffer = NULL;
mpi_data->in2_buffer = NULL;
/* mpi_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, name,
x, v, f_old, s, t] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 8;
block[6] = block[7] = block[8] = 3;
block[9] = block[10] = 4;
MPI_Address( &(sample.orig_id), disp + 0 );
MPI_Address( &(sample.imprt_id), disp + 1 );
MPI_Address( &(sample.type), disp + 2 );
MPI_Address( &(sample.num_bonds), disp + 3 );
MPI_Address( &(sample.num_hbonds), disp + 4 );
MPI_Address( &(sample.name), disp + 5 );
MPI_Address( &(sample.x[0]), disp + 6 );
MPI_Address( &(sample.v[0]), disp + 7 );
MPI_Address( &(sample.f_old[0]), disp + 8 );
MPI_Address( &(sample.s[0]), disp + 9 );
MPI_Address( &(sample.t[0]), disp + 10 );
base = (MPI_Aint)(&(sample));
for( i = 0; i < 11; ++i ) disp[i] -= base;
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_CHAR;
type[6] = type[7] = type[8] = type[9] = type[10] = MPI_DOUBLE;
MPI_Type_struct( 11, block, disp, type, &(mpi_data->mpi_atom_type) );
MPI_Type_commit( &(mpi_data->mpi_atom_type) );
/* boundary_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, x] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 3;
MPI_Address( &(b_sample.orig_id), disp + 0 );
MPI_Address( &(b_sample.imprt_id), disp + 1 );
MPI_Address( &(b_sample.type), disp + 2 );
MPI_Address( &(b_sample.num_bonds), disp + 3 );
MPI_Address( &(b_sample.num_hbonds), disp + 4 );
MPI_Address( &(b_sample.x[0]), disp + 5 );
base = (MPI_Aint)(&(b_sample));
for( i = 0; i < 6; ++i ) disp[i] -= base;
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_DOUBLE;
MPI_Type_struct( 6, block, disp, type, &(mpi_data->boundary_atom_type) );
MPI_Type_commit( &(mpi_data->boundary_atom_type) );
/* mpi_rvec */
block[0] = 3;
MPI_Address( &(rvec_sample[0]), disp + 0 );
base = disp[0];
for( i = 0; i < 1; ++i ) disp[i] -= base;
type[0] = MPI_DOUBLE;
MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec) );
MPI_Type_commit( &(mpi_data->mpi_rvec) );
/* mpi_rvec2 */
block[0] = 2;
MPI_Address( &(rvec2_sample[0]), disp + 0 );
base = disp[0];
for( i = 0; i < 1; ++i ) disp[i] -= base;
type[0] = MPI_DOUBLE;
MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec2) );
MPI_Type_commit( &(mpi_data->mpi_rvec2) );
/* restart_atom - [orig_id, type, name[8], x, v] */
block[0] = block[1] = 1 ;
block[2] = 8;
block[3] = block[4] = 3;
MPI_Address( &(r_sample.orig_id), disp + 0 );
MPI_Address( &(r_sample.type), disp + 1 );
MPI_Address( &(r_sample.name), disp + 2 );
MPI_Address( &(r_sample.x[0]), disp + 3 );
MPI_Address( &(r_sample.v[0]), disp + 4 );
base = (MPI_Aint)(&(r_sample));
for( i = 0; i < 5; ++i ) disp[i] -= base;
type[0] = type[1] = MPI_INT;
type[2] = MPI_CHAR;
type[3] = type[4] = MPI_DOUBLE;
MPI_Type_struct( 5, block, disp, type, &(mpi_data->restart_atom_type) );
MPI_Type_commit( &(mpi_data->restart_atom_type) );
#endif
return SUCCESS;
}
/********************** allocate lists *************************/
#if defined(PURE_REAX)
int Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
{
int i, num_nbrs;
int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop;
int *hb_top, *bond_top;
MPI_Comm comm;
comm = mpi_data->world;
//for( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = system->my_nbrs[i].est_recv;
//system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
// Sort_Boundary_Atoms, Unpack_Exchange_Message, 1 );
num_nbrs = Estimate_NumNeighbors( system, lists );
if(!Make_List( system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR,
*lists+FAR_NBRS, comm )){
fprintf(stderr, "Problem in initializing far nbrs list. Terminating!\n");
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
system->my_rank, num_nbrs,
(int)(num_nbrs*sizeof(far_neighbor_data)/(1024*1024)) );
#endif
Generate_Neighbor_Lists( system, data, workspace, lists );
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
hb_top = (int*) calloc( system->local_cap, sizeof(int) );
Estimate_Storages( system, control, lists,
&Htop, hb_top, bond_top, &num_3body, comm );
Allocate_Matrix( &(workspace->H), system->local_cap, Htop, comm );
workspace->L = NULL;
workspace->U = NULL;
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n",
system->my_rank, Htop,
(int)(Htop * sizeof(sparse_matrix_entry) / (1024*1024)) );
#endif
if( control->hbond_cut > 0 ) {
/* init H indexes */
total_hbonds = 0;
for( i = 0; i < system->n; ++i ) {
system->my_atoms[i].num_hbonds = hb_top[i];
total_hbonds += hb_top[i];
}
total_hbonds = MAX( total_hbonds*SAFER_ZONE, MIN_CAP*MIN_HBONDS );
if( !Make_List( system->Hcap, total_hbonds, TYP_HBOND,
*lists+HBONDS, comm ) ) {
fprintf( stderr, "not enough space for hbonds list. terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n",
system->my_rank, total_hbonds,
(int)(total_hbonds*sizeof(hbond_data)/(1024*1024)) );
#endif
}
/* bonds list */
//Allocate_Bond_List( system->N, bond_top, (*lists)+BONDS );
//num_bonds = bond_top[system->N-1];
total_bonds = 0;
for( i = 0; i < system->N; ++i ) {
system->my_atoms[i].num_bonds = bond_top[i];
total_bonds += bond_top[i];
}
bond_cap = MAX( total_bonds*SAFE_ZONE, MIN_CAP*MIN_BONDS );
if( !Make_List( system->total_cap, bond_cap, TYP_BOND,
*lists+BONDS, comm ) ) {
fprintf( stderr, "not enough space for bonds list. terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n",
system->my_rank, bond_cap,
(int)(bond_cap*sizeof(bond_data)/(1024*1024)) );
#endif
/* 3bodies list */
cap_3body = MAX( num_3body*SAFE_ZONE, MIN_3BODIES );
if( !Make_List( bond_cap, cap_3body, TYP_THREE_BODY,
*lists+THREE_BODIES, comm ) ){
fprintf( stderr, "Problem in initializing angles list. Terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated 3-body list: num_3body=%d, space=%dMB\n",
system->my_rank, cap_3body,
(int)(cap_3body*sizeof(three_body_interaction_data)/(1024*1024)) );
#endif
#if defined(TEST_FORCES)
if( !Make_List( system->total_cap, bond_cap*8, TYP_DDELTA,
*lists+DDELTAS, comm ) ) {
fprintf( stderr, "Problem in initializing dDelta list. Terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated dDelta list: num_ddelta=%d space=%ldMB\n",
system->my_rank, bond_cap*30,
bond_cap*8*sizeof(dDelta_data)/(1024*1024) );
if( !Make_List( bond_cap, bond_cap*50, TYP_DBO, *lists+DBOS, comm ) ) {
fprintf( stderr, "Problem in initializing dBO list. Terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated dbond list: num_dbonds=%d space=%ldMB\n",
system->my_rank, bond_cap*MAX_BONDS*3,
bond_cap*MAX_BONDS*3*sizeof(dbond_data)/(1024*1024) );
#endif
free( hb_top );
free( bond_top );
return SUCCESS;
}
#elif defined(LAMMPS_REAX)
int Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
{
int i, num_nbrs;
int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop;
int *hb_top, *bond_top;
int nrecv[MAX_NBRS];
MPI_Comm comm;
comm = mpi_data->world;
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
hb_top = (int*) calloc( system->local_cap, sizeof(int) );
Estimate_Storages( system, control, lists,
&Htop, hb_top, bond_top, &num_3body, comm );
if( control->hbond_cut > 0 ) {
/* init H indexes */
total_hbonds = 0;
for( i = 0; i < system->n; ++i ) {
system->my_atoms[i].num_hbonds = hb_top[i];
total_hbonds += hb_top[i];
}
total_hbonds = (int)(MAX( total_hbonds*SAFER_ZONE, MIN_CAP*MIN_HBONDS ));
if( !Make_List( system->Hcap, total_hbonds, TYP_HBOND,
*lists+HBONDS, comm ) ) {
fprintf( stderr, "not enough space for hbonds list. terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n",
system->my_rank, total_hbonds,
(int)(total_hbonds*sizeof(hbond_data)/(1024*1024)) );
#endif
}
/* bonds list */
//Allocate_Bond_List( system->N, bond_top, (*lists)+BONDS );
//num_bonds = bond_top[system->N-1];
total_bonds = 0;
for( i = 0; i < system->N; ++i ) {
system->my_atoms[i].num_bonds = bond_top[i];
total_bonds += bond_top[i];
}
bond_cap = (int)(MAX( total_bonds*SAFE_ZONE, MIN_CAP*MIN_BONDS ));
if( !Make_List( system->total_cap, bond_cap, TYP_BOND,
*lists+BONDS, comm ) ) {
fprintf( stderr, "not enough space for bonds list. terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n",
system->my_rank, bond_cap,
(int)(bond_cap*sizeof(bond_data)/(1024*1024)) );
#endif
/* 3bodies list */
cap_3body = (int)(MAX( num_3body*SAFE_ZONE, MIN_3BODIES ));
if( !Make_List( bond_cap, cap_3body, TYP_THREE_BODY,
*lists+THREE_BODIES, comm ) ){
fprintf( stderr, "Problem in initializing angles list. Terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated 3-body list: num_3body=%d, space=%dMB\n",
system->my_rank, cap_3body,
(int)(cap_3body*sizeof(three_body_interaction_data)/(1024*1024)) );
#endif
#if defined(TEST_FORCES)
if( !Make_List( system->total_cap, bond_cap*8, TYP_DDELTA,
*lists+DDELTAS, comm ) ) {
fprintf( stderr, "Problem in initializing dDelta list. Terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated dDelta list: num_ddelta=%d space=%ldMB\n",
system->my_rank, bond_cap*30,
bond_cap*8*sizeof(dDelta_data)/(1024*1024) );
if( !Make_List( bond_cap, bond_cap*50, TYP_DBO, (*lists)+DBOS, comm ) ) {
fprintf( stderr, "Problem in initializing dBO list. Terminating!\n" );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated dbond list: num_dbonds=%d space=%ldMB\n",
system->my_rank, bond_cap*MAX_BONDS*3,
bond_cap*MAX_BONDS*3*sizeof(dbond_data)/(1024*1024) );
#endif
free( hb_top );
free( bond_top );
return SUCCESS;
}
#endif
#if defined(PURE_REAX)
void Initialize( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control,
mpi_datatypes *mpi_data )
{
char msg[MAX_STR];
if( Init_MPI_Datatypes( system, workspace, mpi_data, MPI_COMM_WORLD, msg ) ==
FAILURE ) {
fprintf( stderr, "p%d: init_mpi_datatypes: could not create datatypes\n",
system->my_rank );
fprintf( stderr, "p%d: mpi_data couldn't be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized mpi datatypes\n", system->my_rank );
#endif
if( Init_System(system, control, data, workspace, mpi_data, msg) == FAILURE ){
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: system could not be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: system initialized\n", system->my_rank );
#endif
if( Init_Simulation_Data(system, control, data, mpi_data, msg) == FAILURE ) {
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: sim_data couldn't be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized simulation data\n", system->my_rank );
#endif
if( Init_Workspace( system, control, workspace, mpi_data->world, msg ) ==
FAILURE ) {
fprintf( stderr, "p%d:init_workspace: not enough memory\n",
system->my_rank );
fprintf( stderr, "p%d:workspace couldn't be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized workspace\n", system->my_rank );
#endif
if( Init_Lists( system, control, data, workspace, lists, mpi_data, msg ) ==
FAILURE ) {
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: system could not be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized lists\n", system->my_rank );
#endif
if(Init_Output_Files(system,control,out_control,mpi_data,msg) == FAILURE) {
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: could not open output files! terminating...\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: output files opened\n", system->my_rank );
#endif
if( control->tabulate ) {
if( Init_Lookup_Tables(system,control,workspace,mpi_data,msg) == FAILURE ) {
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: couldn't create lookup table! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized lookup tables\n", system->my_rank );
#endif
}
Init_Force_Functions( control );
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized force functions\n", system->my_rank );
#endif
/*#ifdef TEST_FORCES
Init_Force_Test_Functions();
fprintf(stderr,"p%d: initialized force test functions\n",system->my_rank);
#endif */
}
#elif defined(LAMMPS_REAX)
void Initialize( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control,
mpi_datatypes *mpi_data, MPI_Comm comm )
{
char msg[MAX_STR];
if( Init_MPI_Datatypes(system, workspace, mpi_data, comm, msg) == FAILURE ) {
fprintf( stderr, "p%d: init_mpi_datatypes: could not create datatypes\n",
system->my_rank );
fprintf( stderr, "p%d: mpi_data couldn't be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized mpi datatypes\n", system->my_rank );
#endif
if( Init_System(system, control, msg) == FAILURE ){
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: system could not be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: system initialized\n", system->my_rank );
#endif
if( Init_Simulation_Data( system, control, data, msg ) == FAILURE ) {
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: sim_data couldn't be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized simulation data\n", system->my_rank );
#endif
if( Init_Workspace( system, control, workspace, mpi_data->world, msg ) ==
FAILURE ) {
fprintf( stderr, "p%d:init_workspace: not enough memory\n",
system->my_rank );
fprintf( stderr, "p%d:workspace couldn't be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized workspace\n", system->my_rank );
#endif
if( Init_Lists( system, control, data, workspace, lists, mpi_data, msg ) ==
FAILURE ) {
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: system could not be initialized! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized lists\n", system->my_rank );
#endif
if( Init_Output_Files(system,control,out_control,mpi_data,msg)== FAILURE) {
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: could not open output files! terminating...\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: output files opened\n", system->my_rank );
#endif
if( control->tabulate ) {
if( Init_Lookup_Tables( system, control, workspace, mpi_data, msg ) == FAILURE ) {
fprintf( stderr, "p%d: %s\n", system->my_rank, msg );
fprintf( stderr, "p%d: couldn't create lookup table! terminating.\n",
system->my_rank );
MPI_Abort( mpi_data->world, CANNOT_INITIALIZE );
}
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized lookup tables\n", system->my_rank );
#endif
}
Init_Force_Functions( control );
#if defined(DEBUG)
fprintf( stderr, "p%d: initialized force functions\n", system->my_rank );
#endif
/*#if defined(TEST_FORCES)
Init_Force_Test_Functions();
fprintf(stderr,"p%d: initialized force test functions\n",system->my_rank);
#endif*/
}
#endif
Event Timeline
Log In to Comment