Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92042601
reaxc_nonbonded.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 21:13
Size
14 KB
Mime Type
text/x-c
Expires
Mon, Nov 18, 21:13 (2 d)
Engine
blob
Format
Raw Data
Handle
22342601
Attached To
rLAMMPS lammps
reaxc_nonbonded.cpp
View Options
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, hmaktulga@lbl.gov
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
Please cite the related publication:
H. M. Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama,
"Parallel Reactive Molecular Dynamics: Numerical Methods and
Algorithmic Techniques", Parallel Computing, in press.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "pair_reax_c.h"
#include "reaxc_types.h"
#include "reaxc_nonbonded.h"
#include "reaxc_bond_orders.h"
#include "reaxc_list.h"
#include "reaxc_vector.h"
void
vdW_Coulomb_Energy
(
reax_system
*
system
,
control_params
*
control
,
simulation_data
*
data
,
storage
*
workspace
,
reax_list
**
lists
,
output_controls
*
out_control
)
{
int
i
,
j
,
pj
,
natoms
;
int
start_i
,
end_i
,
flag
;
rc_tagint
orig_i
,
orig_j
;
double
p_vdW1
,
p_vdW1i
;
double
powr_vdW1
,
powgi_vdW1
;
double
tmp
,
r_ij
,
fn13
,
exp1
,
exp2
;
double
Tap
,
dTap
,
dfn13
,
CEvd
,
CEclmb
,
de_core
;
double
dr3gamij_1
,
dr3gamij_3
;
double
e_ele
,
e_vdW
,
e_core
,
SMALL
=
0.0001
;
double
e_lg
,
de_lg
,
r_ij5
,
r_ij6
,
re6
;
rvec
temp
,
ext_press
;
two_body_parameters
*
twbp
;
far_neighbor_data
*
nbr_pj
;
reax_list
*
far_nbrs
;
// Tallying variables:
double
pe_vdw
,
f_tmp
,
delij
[
3
];
natoms
=
system
->
n
;
far_nbrs
=
(
*
lists
)
+
FAR_NBRS
;
p_vdW1
=
system
->
reax_param
.
gp
.
l
[
28
];
p_vdW1i
=
1.0
/
p_vdW1
;
e_core
=
0
;
e_vdW
=
0
;
e_lg
=
de_lg
=
0.0
;
for
(
i
=
0
;
i
<
natoms
;
++
i
)
{
if
(
system
->
my_atoms
[
i
].
type
<
0
)
continue
;
start_i
=
Start_Index
(
i
,
far_nbrs
);
end_i
=
End_Index
(
i
,
far_nbrs
);
orig_i
=
system
->
my_atoms
[
i
].
orig_id
;
for
(
pj
=
start_i
;
pj
<
end_i
;
++
pj
)
{
nbr_pj
=
&
(
far_nbrs
->
select
.
far_nbr_list
[
pj
]);
j
=
nbr_pj
->
nbr
;
if
(
system
->
my_atoms
[
j
].
type
<
0
)
continue
;
orig_j
=
system
->
my_atoms
[
j
].
orig_id
;
flag
=
0
;
if
(
nbr_pj
->
d
<=
control
->
nonb_cut
)
{
if
(
j
<
natoms
)
flag
=
1
;
else
if
(
orig_i
<
orig_j
)
flag
=
1
;
else
if
(
orig_i
==
orig_j
)
{
if
(
nbr_pj
->
dvec
[
2
]
>
SMALL
)
flag
=
1
;
else
if
(
fabs
(
nbr_pj
->
dvec
[
2
])
<
SMALL
)
{
if
(
nbr_pj
->
dvec
[
1
]
>
SMALL
)
flag
=
1
;
else
if
(
fabs
(
nbr_pj
->
dvec
[
1
])
<
SMALL
&&
nbr_pj
->
dvec
[
0
]
>
SMALL
)
flag
=
1
;
}
}
}
if
(
flag
)
{
r_ij
=
nbr_pj
->
d
;
twbp
=
&
(
system
->
reax_param
.
tbp
[
system
->
my_atoms
[
i
].
type
]
[
system
->
my_atoms
[
j
].
type
]);
Tap
=
workspace
->
Tap
[
7
]
*
r_ij
+
workspace
->
Tap
[
6
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
5
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
4
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
3
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
2
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
1
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
0
];
dTap
=
7
*
workspace
->
Tap
[
7
]
*
r_ij
+
6
*
workspace
->
Tap
[
6
];
dTap
=
dTap
*
r_ij
+
5
*
workspace
->
Tap
[
5
];
dTap
=
dTap
*
r_ij
+
4
*
workspace
->
Tap
[
4
];
dTap
=
dTap
*
r_ij
+
3
*
workspace
->
Tap
[
3
];
dTap
=
dTap
*
r_ij
+
2
*
workspace
->
Tap
[
2
];
dTap
+=
workspace
->
Tap
[
1
]
/
r_ij
;
/*vdWaals Calculations*/
if
(
system
->
reax_param
.
gp
.
vdw_type
==
1
||
system
->
reax_param
.
gp
.
vdw_type
==
3
)
{
// shielding
powr_vdW1
=
pow
(
r_ij
,
p_vdW1
);
powgi_vdW1
=
pow
(
1.0
/
twbp
->
gamma_w
,
p_vdW1
);
fn13
=
pow
(
powr_vdW1
+
powgi_vdW1
,
p_vdW1i
);
exp1
=
exp
(
twbp
->
alpha
*
(
1.0
-
fn13
/
twbp
->
r_vdW
)
);
exp2
=
exp
(
0.5
*
twbp
->
alpha
*
(
1.0
-
fn13
/
twbp
->
r_vdW
)
);
e_vdW
=
twbp
->
D
*
(
exp1
-
2.0
*
exp2
);
data
->
my_en
.
e_vdW
+=
Tap
*
e_vdW
;
dfn13
=
pow
(
powr_vdW1
+
powgi_vdW1
,
p_vdW1i
-
1.0
)
*
pow
(
r_ij
,
p_vdW1
-
2.0
);
CEvd
=
dTap
*
e_vdW
-
Tap
*
twbp
->
D
*
(
twbp
->
alpha
/
twbp
->
r_vdW
)
*
(
exp1
-
exp2
)
*
dfn13
;
}
else
{
// no shielding
exp1
=
exp
(
twbp
->
alpha
*
(
1.0
-
r_ij
/
twbp
->
r_vdW
)
);
exp2
=
exp
(
0.5
*
twbp
->
alpha
*
(
1.0
-
r_ij
/
twbp
->
r_vdW
)
);
e_vdW
=
twbp
->
D
*
(
exp1
-
2.0
*
exp2
);
data
->
my_en
.
e_vdW
+=
Tap
*
e_vdW
;
CEvd
=
dTap
*
e_vdW
-
Tap
*
twbp
->
D
*
(
twbp
->
alpha
/
twbp
->
r_vdW
)
*
(
exp1
-
exp2
)
/
r_ij
;
}
if
(
system
->
reax_param
.
gp
.
vdw_type
==
2
||
system
->
reax_param
.
gp
.
vdw_type
==
3
)
{
// innner wall
e_core
=
twbp
->
ecore
*
exp
(
twbp
->
acore
*
(
1.0
-
(
r_ij
/
twbp
->
rcore
)));
data
->
my_en
.
e_vdW
+=
Tap
*
e_core
;
de_core
=
-
(
twbp
->
acore
/
twbp
->
rcore
)
*
e_core
;
CEvd
+=
dTap
*
e_core
+
Tap
*
de_core
/
r_ij
;
// lg correction, only if lgvdw is yes
if
(
control
->
lgflag
)
{
r_ij5
=
pow
(
r_ij
,
5.0
);
r_ij6
=
pow
(
r_ij
,
6.0
);
re6
=
pow
(
twbp
->
lgre
,
6.0
);
e_lg
=
-
(
twbp
->
lgcij
/
(
r_ij6
+
re6
));
data
->
my_en
.
e_vdW
+=
Tap
*
e_lg
;
de_lg
=
-
6.0
*
e_lg
*
r_ij5
/
(
r_ij6
+
re6
)
;
CEvd
+=
dTap
*
e_lg
+
Tap
*
de_lg
/
r_ij
;
}
}
/*Coulomb Calculations*/
dr3gamij_1
=
(
r_ij
*
r_ij
*
r_ij
+
twbp
->
gamma
);
dr3gamij_3
=
pow
(
dr3gamij_1
,
0.33333333333333
);
tmp
=
Tap
/
dr3gamij_3
;
data
->
my_en
.
e_ele
+=
e_ele
=
C_ele
*
system
->
my_atoms
[
i
].
q
*
system
->
my_atoms
[
j
].
q
*
tmp
;
CEclmb
=
C_ele
*
system
->
my_atoms
[
i
].
q
*
system
->
my_atoms
[
j
].
q
*
(
dTap
-
Tap
*
r_ij
/
dr3gamij_1
)
/
dr3gamij_3
;
/* tally into per-atom energy */
if
(
system
->
pair_ptr
->
evflag
||
system
->
pair_ptr
->
vflag_atom
)
{
pe_vdw
=
Tap
*
(
e_vdW
+
e_core
+
e_lg
);
rvec_ScaledSum
(
delij
,
1.
,
system
->
my_atoms
[
i
].
x
,
-
1.
,
system
->
my_atoms
[
j
].
x
);
f_tmp
=
-
(
CEvd
+
CEclmb
);
system
->
pair_ptr
->
ev_tally
(
i
,
j
,
natoms
,
1
,
pe_vdw
,
e_ele
,
f_tmp
,
delij
[
0
],
delij
[
1
],
delij
[
2
]);
}
if
(
control
->
virial
==
0
)
{
rvec_ScaledAdd
(
workspace
->
f
[
i
],
-
(
CEvd
+
CEclmb
),
nbr_pj
->
dvec
);
rvec_ScaledAdd
(
workspace
->
f
[
j
],
+
(
CEvd
+
CEclmb
),
nbr_pj
->
dvec
);
}
else
{
/* NPT, iNPT or sNPT */
rvec_Scale
(
temp
,
CEvd
+
CEclmb
,
nbr_pj
->
dvec
);
rvec_ScaledAdd
(
workspace
->
f
[
i
],
-
1.
,
temp
);
rvec_Add
(
workspace
->
f
[
j
],
temp
);
rvec_iMultiply
(
ext_press
,
nbr_pj
->
rel_box
,
temp
);
rvec_Add
(
data
->
my_ext_press
,
ext_press
);
}
}
}
}
Compute_Polarization_Energy
(
system
,
data
);
}
void
Tabulated_vdW_Coulomb_Energy
(
reax_system
*
system
,
control_params
*
control
,
simulation_data
*
data
,
storage
*
workspace
,
reax_list
**
lists
,
output_controls
*
out_control
)
{
int
i
,
j
,
pj
,
r
,
natoms
;
int
type_i
,
type_j
,
tmin
,
tmax
;
int
start_i
,
end_i
,
flag
;
rc_tagint
orig_i
,
orig_j
;
double
r_ij
,
base
,
dif
;
double
e_vdW
,
e_ele
;
double
CEvd
,
CEclmb
,
SMALL
=
0.0001
;
double
f_tmp
,
delij
[
3
];
rvec
temp
,
ext_press
;
far_neighbor_data
*
nbr_pj
;
reax_list
*
far_nbrs
;
LR_lookup_table
*
t
;
natoms
=
system
->
n
;
far_nbrs
=
(
*
lists
)
+
FAR_NBRS
;
e_ele
=
e_vdW
=
0
;
for
(
i
=
0
;
i
<
natoms
;
++
i
)
{
type_i
=
system
->
my_atoms
[
i
].
type
;
if
(
type_i
<
0
)
continue
;
start_i
=
Start_Index
(
i
,
far_nbrs
);
end_i
=
End_Index
(
i
,
far_nbrs
);
orig_i
=
system
->
my_atoms
[
i
].
orig_id
;
for
(
pj
=
start_i
;
pj
<
end_i
;
++
pj
)
{
nbr_pj
=
&
(
far_nbrs
->
select
.
far_nbr_list
[
pj
]);
j
=
nbr_pj
->
nbr
;
type_j
=
system
->
my_atoms
[
j
].
type
;
if
(
type_j
<
0
)
continue
;
orig_j
=
system
->
my_atoms
[
j
].
orig_id
;
flag
=
0
;
if
(
nbr_pj
->
d
<=
control
->
nonb_cut
)
{
if
(
j
<
natoms
)
flag
=
1
;
else
if
(
orig_i
<
orig_j
)
flag
=
1
;
else
if
(
orig_i
==
orig_j
)
{
if
(
nbr_pj
->
dvec
[
2
]
>
SMALL
)
flag
=
1
;
else
if
(
fabs
(
nbr_pj
->
dvec
[
2
])
<
SMALL
)
{
if
(
nbr_pj
->
dvec
[
1
]
>
SMALL
)
flag
=
1
;
else
if
(
fabs
(
nbr_pj
->
dvec
[
1
])
<
SMALL
&&
nbr_pj
->
dvec
[
0
]
>
SMALL
)
flag
=
1
;
}
}
}
if
(
flag
)
{
r_ij
=
nbr_pj
->
d
;
tmin
=
MIN
(
type_i
,
type_j
);
tmax
=
MAX
(
type_i
,
type_j
);
t
=
&
(
LR
[
tmin
][
tmax
]
);
/* Cubic Spline Interpolation */
r
=
(
int
)(
r_ij
*
t
->
inv_dx
);
if
(
r
==
0
)
++
r
;
base
=
(
double
)(
r
+
1
)
*
t
->
dx
;
dif
=
r_ij
-
base
;
e_vdW
=
((
t
->
vdW
[
r
].
d
*
dif
+
t
->
vdW
[
r
].
c
)
*
dif
+
t
->
vdW
[
r
].
b
)
*
dif
+
t
->
vdW
[
r
].
a
;
e_ele
=
((
t
->
ele
[
r
].
d
*
dif
+
t
->
ele
[
r
].
c
)
*
dif
+
t
->
ele
[
r
].
b
)
*
dif
+
t
->
ele
[
r
].
a
;
e_ele
*=
system
->
my_atoms
[
i
].
q
*
system
->
my_atoms
[
j
].
q
;
data
->
my_en
.
e_vdW
+=
e_vdW
;
data
->
my_en
.
e_ele
+=
e_ele
;
CEvd
=
((
t
->
CEvd
[
r
].
d
*
dif
+
t
->
CEvd
[
r
].
c
)
*
dif
+
t
->
CEvd
[
r
].
b
)
*
dif
+
t
->
CEvd
[
r
].
a
;
CEclmb
=
((
t
->
CEclmb
[
r
].
d
*
dif
+
t
->
CEclmb
[
r
].
c
)
*
dif
+
t
->
CEclmb
[
r
].
b
)
*
dif
+
t
->
CEclmb
[
r
].
a
;
CEclmb
*=
system
->
my_atoms
[
i
].
q
*
system
->
my_atoms
[
j
].
q
;
/* tally into per-atom energy */
if
(
system
->
pair_ptr
->
evflag
||
system
->
pair_ptr
->
vflag_atom
)
{
rvec_ScaledSum
(
delij
,
1.
,
system
->
my_atoms
[
i
].
x
,
-
1.
,
system
->
my_atoms
[
j
].
x
);
f_tmp
=
-
(
CEvd
+
CEclmb
);
system
->
pair_ptr
->
ev_tally
(
i
,
j
,
natoms
,
1
,
e_vdW
,
e_ele
,
f_tmp
,
delij
[
0
],
delij
[
1
],
delij
[
2
]);
}
if
(
control
->
virial
==
0
)
{
rvec_ScaledAdd
(
workspace
->
f
[
i
],
-
(
CEvd
+
CEclmb
),
nbr_pj
->
dvec
);
rvec_ScaledAdd
(
workspace
->
f
[
j
],
+
(
CEvd
+
CEclmb
),
nbr_pj
->
dvec
);
}
else
{
// NPT, iNPT or sNPT
rvec_Scale
(
temp
,
CEvd
+
CEclmb
,
nbr_pj
->
dvec
);
rvec_ScaledAdd
(
workspace
->
f
[
i
],
-
1.
,
temp
);
rvec_Add
(
workspace
->
f
[
j
],
temp
);
rvec_iMultiply
(
ext_press
,
nbr_pj
->
rel_box
,
temp
);
rvec_Add
(
data
->
my_ext_press
,
ext_press
);
}
}
}
}
Compute_Polarization_Energy
(
system
,
data
);
}
void
Compute_Polarization_Energy
(
reax_system
*
system
,
simulation_data
*
data
)
{
int
i
,
type_i
;
double
q
,
en_tmp
;
data
->
my_en
.
e_pol
=
0.0
;
for
(
i
=
0
;
i
<
system
->
n
;
i
++
)
{
type_i
=
system
->
my_atoms
[
i
].
type
;
if
(
type_i
<
0
)
continue
;
q
=
system
->
my_atoms
[
i
].
q
;
en_tmp
=
KCALpMOL_to_EV
*
(
system
->
reax_param
.
sbp
[
type_i
].
chi
*
q
+
(
system
->
reax_param
.
sbp
[
type_i
].
eta
/
2.
)
*
SQR
(
q
));
data
->
my_en
.
e_pol
+=
en_tmp
;
/* tally into per-atom energy */
if
(
system
->
pair_ptr
->
evflag
)
system
->
pair_ptr
->
ev_tally
(
i
,
i
,
system
->
n
,
1
,
0.0
,
en_tmp
,
0.0
,
0.0
,
0.0
,
0.0
);
}
}
void
LR_vdW_Coulomb
(
reax_system
*
system
,
storage
*
workspace
,
control_params
*
control
,
int
i
,
int
j
,
double
r_ij
,
LR_data
*
lr
)
{
double
p_vdW1
=
system
->
reax_param
.
gp
.
l
[
28
];
double
p_vdW1i
=
1.0
/
p_vdW1
;
double
powr_vdW1
,
powgi_vdW1
;
double
tmp
,
fn13
,
exp1
,
exp2
;
double
Tap
,
dTap
,
dfn13
;
double
dr3gamij_1
,
dr3gamij_3
;
double
e_core
,
de_core
;
double
e_lg
,
de_lg
,
r_ij5
,
r_ij6
,
re6
;
two_body_parameters
*
twbp
;
twbp
=
&
(
system
->
reax_param
.
tbp
[
i
][
j
]);
e_core
=
0
;
de_core
=
0
;
e_lg
=
de_lg
=
0.0
;
/* calculate taper and its derivative */
Tap
=
workspace
->
Tap
[
7
]
*
r_ij
+
workspace
->
Tap
[
6
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
5
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
4
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
3
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
2
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
1
];
Tap
=
Tap
*
r_ij
+
workspace
->
Tap
[
0
];
dTap
=
7
*
workspace
->
Tap
[
7
]
*
r_ij
+
6
*
workspace
->
Tap
[
6
];
dTap
=
dTap
*
r_ij
+
5
*
workspace
->
Tap
[
5
];
dTap
=
dTap
*
r_ij
+
4
*
workspace
->
Tap
[
4
];
dTap
=
dTap
*
r_ij
+
3
*
workspace
->
Tap
[
3
];
dTap
=
dTap
*
r_ij
+
2
*
workspace
->
Tap
[
2
];
dTap
+=
workspace
->
Tap
[
1
]
/
r_ij
;
/*vdWaals Calculations*/
if
(
system
->
reax_param
.
gp
.
vdw_type
==
1
||
system
->
reax_param
.
gp
.
vdw_type
==
3
)
{
// shielding
powr_vdW1
=
pow
(
r_ij
,
p_vdW1
);
powgi_vdW1
=
pow
(
1.0
/
twbp
->
gamma_w
,
p_vdW1
);
fn13
=
pow
(
powr_vdW1
+
powgi_vdW1
,
p_vdW1i
);
exp1
=
exp
(
twbp
->
alpha
*
(
1.0
-
fn13
/
twbp
->
r_vdW
)
);
exp2
=
exp
(
0.5
*
twbp
->
alpha
*
(
1.0
-
fn13
/
twbp
->
r_vdW
)
);
lr
->
e_vdW
=
Tap
*
twbp
->
D
*
(
exp1
-
2.0
*
exp2
);
dfn13
=
pow
(
powr_vdW1
+
powgi_vdW1
,
p_vdW1i
-
1.0
)
*
pow
(
r_ij
,
p_vdW1
-
2.0
);
lr
->
CEvd
=
dTap
*
twbp
->
D
*
(
exp1
-
2.0
*
exp2
)
-
Tap
*
twbp
->
D
*
(
twbp
->
alpha
/
twbp
->
r_vdW
)
*
(
exp1
-
exp2
)
*
dfn13
;
}
else
{
// no shielding
exp1
=
exp
(
twbp
->
alpha
*
(
1.0
-
r_ij
/
twbp
->
r_vdW
)
);
exp2
=
exp
(
0.5
*
twbp
->
alpha
*
(
1.0
-
r_ij
/
twbp
->
r_vdW
)
);
lr
->
e_vdW
=
Tap
*
twbp
->
D
*
(
exp1
-
2.0
*
exp2
);
lr
->
CEvd
=
dTap
*
twbp
->
D
*
(
exp1
-
2.0
*
exp2
)
-
Tap
*
twbp
->
D
*
(
twbp
->
alpha
/
twbp
->
r_vdW
)
*
(
exp1
-
exp2
)
/
r_ij
;
}
if
(
system
->
reax_param
.
gp
.
vdw_type
==
2
||
system
->
reax_param
.
gp
.
vdw_type
==
3
)
{
// innner wall
e_core
=
twbp
->
ecore
*
exp
(
twbp
->
acore
*
(
1.0
-
(
r_ij
/
twbp
->
rcore
)));
lr
->
e_vdW
+=
Tap
*
e_core
;
de_core
=
-
(
twbp
->
acore
/
twbp
->
rcore
)
*
e_core
;
lr
->
CEvd
+=
dTap
*
e_core
+
Tap
*
de_core
/
r_ij
;
// lg correction, only if lgvdw is yes
if
(
control
->
lgflag
)
{
r_ij5
=
pow
(
r_ij
,
5.0
);
r_ij6
=
pow
(
r_ij
,
6.0
);
re6
=
pow
(
twbp
->
lgre
,
6.0
);
e_lg
=
-
(
twbp
->
lgcij
/
(
r_ij6
+
re6
));
lr
->
e_vdW
+=
Tap
*
e_lg
;
de_lg
=
-
6.0
*
e_lg
*
r_ij5
/
(
r_ij6
+
re6
)
;
lr
->
CEvd
+=
dTap
*
e_lg
+
Tap
*
de_lg
/
r_ij
;
}
}
/* Coulomb calculations */
dr3gamij_1
=
(
r_ij
*
r_ij
*
r_ij
+
twbp
->
gamma
);
dr3gamij_3
=
pow
(
dr3gamij_1
,
0.33333333333333
);
tmp
=
Tap
/
dr3gamij_3
;
lr
->
H
=
EV_to_KCALpMOL
*
tmp
;
lr
->
e_ele
=
C_ele
*
tmp
;
lr
->
CEclmb
=
C_ele
*
(
dTap
-
Tap
*
r_ij
/
dr3gamij_1
)
/
dr3gamij_3
;
}
Event Timeline
Log In to Comment