Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F111108992
angle_charmm.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Apr 29, 15:53
Size
8 KB
Mime Type
text/x-c
Expires
Thu, May 1, 15:53 (2 d)
Engine
blob
Format
Raw Data
Handle
25858625
Attached To
rLAMMPS lammps
angle_charmm.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
www.cs.sandia.gov/~sjplimp/lammps.html
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Paul Crozier (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "angle_charmm.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "error.h"
#define SMALL 0.001
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
AngleCharmm::~AngleCharmm()
{
if (allocated) {
memory->sfree(setflag);
memory->sfree(k);
memory->sfree(theta0);
memory->sfree(k_ub);
memory->sfree(r_ub);
}
}
/* ---------------------------------------------------------------------- */
void AngleCharmm::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type,factor;
double delx1,dely1,delz1,delx2,dely2,delz2,rfactor,dtheta,tk;
double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22,vx1,vx2,vy1,vy2,vz1,vz2;
double delxUB,delyUB,delzUB,rsqUB,rUB,dr,rk,forceUB;
energy = 0.0;
if (vflag) for (n = 0; n < 6; n++) virial[n] = 0.0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
if (newton_bond) factor = 3;
else {
factor = 0;
if (i1 < nlocal) factor++;
if (i2 < nlocal) factor++;
if (i3 < nlocal) factor++;
}
rfactor = factor/3.0;
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(&delx1,&dely1,&delz1);
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(&delx2,&dely2,&delz2);
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// Urey-Bradley bond
delxUB = x[i3][0] - x[i1][0];
delyUB = x[i3][1] - x[i1][1];
delzUB = x[i3][2] - x[i1][2];
domain->minimum_image(&delxUB,&delyUB,&delzUB);
rsqUB = delxUB*delxUB + delyUB*delyUB + delzUB*delzUB;
rUB = sqrt(rsqUB);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
// harmonic force & energy
dtheta = acos(c) - theta0[type];
tk = k[type] * dtheta;
if (eflag) energy += rfactor * tk*dtheta;
a = 2.0 * tk * s;
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
vx1 = a11*delx1 + a12*delx2;
vx2 = a22*delx2 + a12*delx1;
vy1 = a11*dely1 + a12*dely2;
vy2 = a22*dely2 + a12*dely1;
vz1 = a11*delz1 + a12*delz2;
vz2 = a22*delz2 + a12*delz1;
// Urey-Bradley force & energy
dr = rUB - r_ub[type];
rk = k_ub[type] * dr;
if (rUB > 0.0) forceUB = -2.0*rk/rUB;
else forceUB = 0.0;
if (eflag) energy += rfactor * rk*dr;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] -= vx1 + delxUB*forceUB;
f[i1][1] -= vy1 + delyUB*forceUB;
f[i1][2] -= vz1 + delzUB*forceUB;
}
if (newton_bond || i2 < nlocal) {
f[i2][0] += vx1 + vx2;
f[i2][1] += vy1 + vy2;
f[i2][2] += vz1 + vz2;
}
if (newton_bond || i3 < nlocal) {
f[i3][0] -= vx2 - delxUB*forceUB;
f[i3][1] -= vy2 - delyUB*forceUB;
f[i3][2] -= vz2 - delzUB*forceUB;
}
// virial contribution
if (vflag) {
virial[0] -= rfactor * (delx1*vx1 + delx2*vx2 - delxUB*delxUB*forceUB);
virial[1] -= rfactor * (dely1*vy1 + dely2*vy2 - delyUB*delyUB*forceUB);
virial[2] -= rfactor * (delz1*vz1 + delz2*vz2 - delzUB*delzUB*forceUB);
virial[3] -= rfactor * (delx1*vy1 + delx2*vy2 - delxUB*delyUB*forceUB);
virial[4] -= rfactor * (delx1*vz1 + delx2*vz2 - delxUB*delzUB*forceUB);
virial[5] -= rfactor * (dely1*vz1 + dely2*vz2 - delyUB*delzUB*forceUB);
}
}
}
/* ---------------------------------------------------------------------- */
void AngleCharmm::allocate()
{
allocated = 1;
int n = atom->nangletypes;
k = (double *) memory->smalloc((n+1)*sizeof(double),"angle:k");
theta0 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:theta0");
k_ub = (double *) memory->smalloc((n+1)*sizeof(double),"angle:k_ub");
r_ub = (double *) memory->smalloc((n+1)*sizeof(double),"angle:r_ub");
setflag = (int *) memory->smalloc((n+1)*sizeof(int),"angle:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void AngleCharmm::coeff(int which, int narg, char **arg)
{
if (which != 0) error->all("Invalid coeffs for this angle style");
if (narg != 5) error->all("Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(arg[0],atom->nangletypes,ilo,ihi);
double k_one = atof(arg[1]);
double theta0_one = atof(arg[2]);
double k_ub_one = atof(arg[3]);
double r_ub_one = atof(arg[4]);
// convert theta0 from degrees to radians
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
theta0[i] = theta0_one/180.0 * PI;
k_ub[i] = k_ub_one;
r_ub[i] = r_ub_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all("Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleCharmm::equilibrium_angle(int i)
{
return theta0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleCharmm::write_restart(FILE *fp)
{
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k_ub[1],sizeof(double),atom->nangletypes,fp);
fwrite(&r_ub[1],sizeof(double),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleCharmm::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&k[1],sizeof(double),atom->nangletypes,fp);
fread(&theta0[1],sizeof(double),atom->nangletypes,fp);
fread(&k_ub[1],sizeof(double),atom->nangletypes,fp);
fread(&r_ub[1],sizeof(double),atom->nangletypes,fp);
}
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k_ub[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&r_ub[1],atom->nangletypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ---------------------------------------------------------------------- */
double AngleCharmm::single(int type, int i1, int i2, int i3, double rfactor)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(&delx1,&dely1,&delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(&delx2,&dely2,&delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double delxUB = x[i3][0] - x[i1][0];
double delyUB = x[i3][1] - x[i1][1];
double delzUB = x[i3][2] - x[i1][2];
domain->minimum_image(&delxUB,&delyUB,&delzUB);
double rUB = sqrt(delxUB*delxUB + delyUB*delyUB + delzUB*delzUB);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double dtheta = acos(c) - theta0[type];
double tk = k[type] * dtheta;
double dr = rUB - r_ub[type];
double rk = k_ub[type] * dr;
return (rfactor * (tk*dtheta + rk*dr));
}
Event Timeline
Log In to Comment