Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102270279
thermo.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 23:17
Size
61 KB
Mime Type
text/x-c
Expires
Thu, Feb 20, 23:17 (2 d)
Engine
blob
Format
Raw Data
Handle
24320791
Attached To
rLAMMPS lammps
thermo.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "lmptype.h"
#include "mpi.h"
#include "math.h"
#include "stdlib.h"
#include "string.h"
#include "thermo.h"
#include "atom.h"
#include "update.h"
#include "comm.h"
#include "domain.h"
#include "lattice.h"
#include "modify.h"
#include "fix.h"
#include "compute.h"
#include "input.h"
#include "variable.h"
#include "force.h"
#include "pair.h"
#include "bond.h"
#include "angle.h"
#include "dihedral.h"
#include "improper.h"
#include "kspace.h"
#include "output.h"
#include "timer.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
#include "math_const.h"
using
namespace
LAMMPS_NS
;
using
namespace
MathConst
;
// customize a new keyword by adding to this list:
// step, elapsed, elaplong, dt, cpu, tpcpu, spcpu
// atoms, temp, press, pe, ke, etotal, enthalpy
// evdwl, ecoul, epair, ebond, eangle, edihed, eimp, emol, elong, etail
// vol, lx, ly, lz, xlo, xhi, ylo, yhi, zlo, zhi, xy, xz, yz, xlat, ylat, zlat
// pxx, pyy, pzz, pxy, pxz, pyz
// fmax, fnorm
// cella, cellb, cellc, cellalpha, cellbeta, cellgamma
// customize a new thermo style by adding a DEFINE to this list
// also insure allocation of line string is correct in constructor
#define ONE "step temp epair emol etotal press"
#define MULTI "etotal ke temp pe ebond eangle edihed eimp evdwl ecoul elong press"
enum
{
IGNORE
,
WARN
,
ERROR
};
// same as write_restart.cpp
enum
{
ONELINE
,
MULTILINE
};
enum
{
INT
,
FLOAT
,
BIGINT
};
enum
{
SCALAR
,
VECTOR
,
ARRAY
};
#define INVOKED_SCALAR 1
#define INVOKED_VECTOR 2
#define INVOKED_ARRAY 4
#define DELTA 8
/* ---------------------------------------------------------------------- */
Thermo
::
Thermo
(
LAMMPS
*
lmp
,
int
narg
,
char
**
arg
)
:
Pointers
(
lmp
)
{
MPI_Comm_rank
(
world
,
&
me
);
int
n
=
strlen
(
arg
[
0
])
+
1
;
style
=
new
char
[
n
];
strcpy
(
style
,
arg
[
0
]);
// set thermo_modify defaults
modified
=
0
;
normuserflag
=
0
;
lineflag
=
ONELINE
;
lostflag
=
ERROR
;
lostbefore
=
0
;
flushflag
=
0
;
// set style and corresponding lineflag
// custom style builds its own line of keywords
// customize a new thermo style by adding to if statement
// allocate line string used for 3 tasks
// concat of custom style args
// one-time thermo output of header line
// each line of numeric thermo output
// 256 = extra for ONE or MULTI string or multi formatting
// 64 = max per-arg chars in header or numeric output
if
(
strcmp
(
style
,
"one"
)
==
0
)
{
line
=
new
char
[
256
+
6
*
64
];
strcpy
(
line
,
ONE
);
}
else
if
(
strcmp
(
style
,
"multi"
)
==
0
)
{
line
=
new
char
[
256
+
12
*
64
];
strcpy
(
line
,
MULTI
);
lineflag
=
MULTILINE
;
}
else
if
(
strcmp
(
style
,
"custom"
)
==
0
)
{
if
(
narg
==
1
)
error
->
all
(
FLERR
,
"Illegal thermo style custom command"
);
line
=
new
char
[
256
+
narg
*
64
];
line
[
0
]
=
'\0'
;
for
(
int
iarg
=
1
;
iarg
<
narg
;
iarg
++
)
{
strcat
(
line
,
arg
[
iarg
]);
strcat
(
line
,
" "
);
}
line
[
strlen
(
line
)
-
1
]
=
'\0'
;
}
else
error
->
all
(
FLERR
,
"Illegal thermo style command"
);
// ptrs, flags, IDs for compute objects thermo may use or create
temperature
=
NULL
;
pressure
=
NULL
;
pe
=
NULL
;
index_temp
=
index_press_scalar
=
index_press_vector
=
index_pe
=
-
1
;
id_temp
=
(
char
*
)
"thermo_temp"
;
id_press
=
(
char
*
)
"thermo_press"
;
id_pe
=
(
char
*
)
"thermo_pe"
;
// count fields in line
// allocate per-field memory
// process line of keywords
nfield_initial
=
atom
->
count_words
(
line
);
allocate
();
parse_fields
(
line
);
// format strings
char
*
bigint_format
=
(
char
*
)
BIGINT_FORMAT
;
char
*
fformat_multi
=
(
char
*
)
"---------------- Step %%8%s ----- "
"CPU = %%11.4f (sec) ----------------"
;
sprintf
(
format_multi
,
fformat_multi
,
&
bigint_format
[
1
]);
format_float_one_def
=
(
char
*
)
"%12.8g"
;
format_float_multi_def
=
(
char
*
)
"%14.4f"
;
format_int_one_def
=
(
char
*
)
"%8d"
;
format_int_multi_def
=
(
char
*
)
"%14d"
;
sprintf
(
format_bigint_one_def
,
"%%8%s"
,
&
bigint_format
[
1
]);
sprintf
(
format_bigint_multi_def
,
"%%14%s"
,
&
bigint_format
[
1
]);
format_float_user
=
NULL
;
format_int_user
=
NULL
;
format_bigint_user
=
NULL
;
}
/* ---------------------------------------------------------------------- */
Thermo
::~
Thermo
()
{
delete
[]
style
;
delete
[]
line
;
deallocate
();
// format strings
delete
[]
format_float_user
;
delete
[]
format_int_user
;
delete
[]
format_bigint_user
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
init
()
{
int
i
,
n
;
// set normvalue to default setting unless user has specified it
if
(
normuserflag
)
normvalue
=
normuser
;
else
if
(
strcmp
(
update
->
unit_style
,
"lj"
)
==
0
)
normvalue
=
1
;
else
normvalue
=
0
;
// add Volume field if volume changes and not style = custom
// this check must come after domain init, so box_change is set
nfield
=
nfield_initial
;
if
(
domain
->
box_change
&&
strcmp
(
style
,
"custom"
)
!=
0
)
addfield
(
"Volume"
,
&
Thermo
::
compute_vol
,
FLOAT
);
// set format string for each field
// include keyword if lineflag = MULTILINE
// add '/n' every 3 values if lineflag = MULTILINE
// add trailing '/n' to last value
char
*
ptr
;
for
(
i
=
0
;
i
<
nfield
;
i
++
)
{
format
[
i
][
0
]
=
'\0'
;
if
(
lineflag
==
MULTILINE
&&
i
%
3
==
0
)
strcat
(
format
[
i
],
"
\n
"
);
if
(
format_user
[
i
])
ptr
=
format_user
[
i
];
else
if
(
vtype
[
i
]
==
FLOAT
)
{
if
(
format_float_user
)
ptr
=
format_float_user
;
else
if
(
lineflag
==
ONELINE
)
ptr
=
format_float_one_def
;
else
if
(
lineflag
==
MULTILINE
)
ptr
=
format_float_multi_def
;
}
else
if
(
vtype
[
i
]
==
INT
)
{
if
(
format_int_user
)
ptr
=
format_int_user
;
else
if
(
lineflag
==
ONELINE
)
ptr
=
format_int_one_def
;
else
if
(
lineflag
==
MULTILINE
)
ptr
=
format_int_multi_def
;
}
else
if
(
vtype
[
i
]
==
BIGINT
)
{
if
(
format_bigint_user
)
ptr
=
format_bigint_user
;
else
if
(
lineflag
==
ONELINE
)
ptr
=
format_bigint_one_def
;
else
if
(
lineflag
==
MULTILINE
)
ptr
=
format_bigint_multi_def
;
}
n
=
strlen
(
format
[
i
]);
if
(
lineflag
==
ONELINE
)
sprintf
(
&
format
[
i
][
n
],
"%s "
,
ptr
);
else
sprintf
(
&
format
[
i
][
n
],
"%-8s = %s "
,
keyword
[
i
],
ptr
);
if
(
i
==
nfield
-
1
)
strcat
(
format
[
i
],
"
\n
"
);
}
// find current ptr for each Compute ID
// cudable = 0 if any compute used by Thermo is non-CUDA
cudable
=
1
;
int
icompute
;
for
(
i
=
0
;
i
<
ncompute
;
i
++
)
{
icompute
=
modify
->
find_compute
(
id_compute
[
i
]);
if
(
icompute
<
0
)
error
->
all
(
FLERR
,
"Could not find thermo compute ID"
);
computes
[
i
]
=
modify
->
compute
[
icompute
];
cudable
=
cudable
&&
computes
[
i
]
->
cudable
;
}
// find current ptr for each Fix ID
// check that fix frequency is acceptable with thermo output frequency
int
ifix
;
for
(
i
=
0
;
i
<
nfix
;
i
++
)
{
ifix
=
modify
->
find_fix
(
id_fix
[
i
]);
if
(
ifix
<
0
)
error
->
all
(
FLERR
,
"Could not find thermo fix ID"
);
fixes
[
i
]
=
modify
->
fix
[
ifix
];
if
(
output
->
thermo_every
%
fixes
[
i
]
->
global_freq
)
error
->
all
(
FLERR
,
"Thermo and fix not computed at compatible times"
);
}
// find current ptr for each Variable ID
int
ivariable
;
for
(
i
=
0
;
i
<
nvariable
;
i
++
)
{
ivariable
=
input
->
variable
->
find
(
id_variable
[
i
]);
if
(
ivariable
<
0
)
error
->
all
(
FLERR
,
"Could not find thermo variable name"
);
variables
[
i
]
=
ivariable
;
}
// set ptrs to keyword-specific Compute objects
if
(
index_temp
>=
0
)
temperature
=
computes
[
index_temp
];
if
(
index_press_scalar
>=
0
)
pressure
=
computes
[
index_press_scalar
];
if
(
index_press_vector
>=
0
)
pressure
=
computes
[
index_press_vector
];
if
(
index_pe
>=
0
)
pe
=
computes
[
index_pe
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
header
()
{
if
(
lineflag
==
MULTILINE
)
return
;
int
loc
=
0
;
for
(
int
i
=
0
;
i
<
nfield
;
i
++
)
loc
+=
sprintf
(
&
line
[
loc
],
"%s "
,
keyword
[
i
]);
sprintf
(
&
line
[
loc
],
"
\n
"
);
if
(
me
==
0
)
{
if
(
screen
)
fprintf
(
screen
,
"%s"
,
line
);
if
(
logfile
)
fprintf
(
logfile
,
"%s"
,
line
);
}
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute
(
int
flag
)
{
int
i
;
firststep
=
flag
;
bigint
ntimestep
=
update
->
ntimestep
;
// check for lost atoms
// turn off normflag if natoms = 0 to avoid divide by 0
natoms
=
lost_check
();
if
(
natoms
==
0
)
normflag
=
0
;
else
normflag
=
normvalue
;
// invoke Compute methods needed for thermo keywords
for
(
i
=
0
;
i
<
ncompute
;
i
++
)
if
(
compute_which
[
i
]
==
SCALAR
)
{
if
(
!
(
computes
[
i
]
->
invoked_flag
&
INVOKED_SCALAR
))
{
computes
[
i
]
->
compute_scalar
();
computes
[
i
]
->
invoked_flag
|=
INVOKED_SCALAR
;
}
}
else
if
(
compute_which
[
i
]
==
VECTOR
)
{
if
(
!
(
computes
[
i
]
->
invoked_flag
&
INVOKED_VECTOR
))
{
computes
[
i
]
->
compute_vector
();
computes
[
i
]
->
invoked_flag
|=
INVOKED_VECTOR
;
}
}
else
if
(
compute_which
[
i
]
==
ARRAY
)
{
if
(
!
(
computes
[
i
]
->
invoked_flag
&
INVOKED_ARRAY
))
{
computes
[
i
]
->
compute_array
();
computes
[
i
]
->
invoked_flag
|=
INVOKED_ARRAY
;
}
}
// if lineflag = MULTILINE, prepend step/cpu header line
int
loc
=
0
;
if
(
lineflag
==
MULTILINE
)
{
double
cpu
;
if
(
flag
)
cpu
=
timer
->
elapsed
(
Timer
::
LOOP
);
else
cpu
=
0.0
;
loc
=
sprintf
(
&
line
[
loc
],
format_multi
,
ntimestep
,
cpu
);
}
// add each thermo value to line with its specific format
for
(
ifield
=
0
;
ifield
<
nfield
;
ifield
++
)
{
(
this
->*
vfunc
[
ifield
])();
if
(
vtype
[
ifield
]
==
FLOAT
)
loc
+=
sprintf
(
&
line
[
loc
],
format
[
ifield
],
dvalue
);
else
if
(
vtype
[
ifield
]
==
INT
)
loc
+=
sprintf
(
&
line
[
loc
],
format
[
ifield
],
ivalue
);
else
if
(
vtype
[
ifield
]
==
BIGINT
)
{
loc
+=
sprintf
(
&
line
[
loc
],
format
[
ifield
],
bivalue
);
}
}
// print line to screen and logfile
if
(
me
==
0
)
{
if
(
screen
)
fprintf
(
screen
,
"%s"
,
line
);
if
(
logfile
)
{
fprintf
(
logfile
,
"%s"
,
line
);
if
(
flushflag
)
fflush
(
logfile
);
}
}
}
/* ----------------------------------------------------------------------
check for lost atoms, return current number of atoms
------------------------------------------------------------------------- */
bigint
Thermo
::
lost_check
()
{
// ntotal = current # of atoms
bigint
ntotal
;
bigint
nblocal
=
atom
->
nlocal
;
MPI_Allreduce
(
&
nblocal
,
&
ntotal
,
1
,
MPI_LMP_BIGINT
,
MPI_SUM
,
world
);
if
(
ntotal
<
0
||
ntotal
>
MAXBIGINT
)
error
->
all
(
FLERR
,
"Too many total atoms"
);
if
(
ntotal
==
atom
->
natoms
)
return
ntotal
;
// if not checking or already warned, just return
// reset total atom count
if
(
lostflag
==
IGNORE
)
return
ntotal
;
if
(
lostflag
==
WARN
&&
lostbefore
==
1
)
{
atom
->
natoms
=
ntotal
;
return
ntotal
;
}
// error message
if
(
lostflag
==
ERROR
)
{
char
str
[
64
];
sprintf
(
str
,
"Lost atoms: original "
BIGINT_FORMAT
" current "
BIGINT_FORMAT
,
atom
->
natoms
,
ntotal
);
error
->
all
(
FLERR
,
str
);
}
// warning message
char
str
[
64
];
sprintf
(
str
,
"Lost atoms: original "
BIGINT_FORMAT
" current "
BIGINT_FORMAT
,
atom
->
natoms
,
ntotal
);
if
(
me
==
0
)
error
->
warning
(
FLERR
,
str
,
0
);
// reset total atom count
atom
->
natoms
=
ntotal
;
lostbefore
=
1
;
return
ntotal
;
}
/* ----------------------------------------------------------------------
modify thermo parameters
------------------------------------------------------------------------- */
void
Thermo
::
modify_params
(
int
narg
,
char
**
arg
)
{
if
(
narg
==
0
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
modified
=
1
;
int
iarg
=
0
;
while
(
iarg
<
narg
)
{
if
(
strcmp
(
arg
[
iarg
],
"temp"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
if
(
index_temp
<
0
)
error
->
all
(
FLERR
,
"Thermo style does not use temp"
);
delete
[]
id_compute
[
index_temp
];
int
n
=
strlen
(
arg
[
iarg
+
1
])
+
1
;
id_compute
[
index_temp
]
=
new
char
[
n
];
strcpy
(
id_compute
[
index_temp
],
arg
[
iarg
+
1
]);
int
icompute
=
modify
->
find_compute
(
arg
[
iarg
+
1
]);
if
(
icompute
<
0
)
error
->
all
(
FLERR
,
"Could not find thermo_modify temperature ID"
);
temperature
=
modify
->
compute
[
icompute
];
if
(
temperature
->
tempflag
==
0
)
error
->
all
(
FLERR
,
"Thermo_modify temperature ID does not "
"compute temperature"
);
if
(
temperature
->
igroup
!=
0
&&
comm
->
me
==
0
)
error
->
warning
(
FLERR
,
"Temperature for thermo pressure is not for group all"
);
// reset id_temp of pressure to new temperature ID
// either pressure currently being used by thermo or "thermo_press"
if
(
index_press_scalar
>=
0
)
{
icompute
=
modify
->
find_compute
(
id_compute
[
index_press_scalar
]);
if
(
icompute
<
0
)
error
->
all
(
FLERR
,
"Pressure ID for thermo does not exist"
);
}
else
if
(
index_press_vector
>=
0
)
{
icompute
=
modify
->
find_compute
(
id_compute
[
index_press_vector
]);
if
(
icompute
<
0
)
error
->
all
(
FLERR
,
"Pressure ID for thermo does not exist"
);
}
else
icompute
=
modify
->
find_compute
((
char
*
)
"thermo_press"
);
modify
->
compute
[
icompute
]
->
reset_extra_compute_fix
(
arg
[
iarg
+
1
]);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"press"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
if
(
index_press_scalar
<
0
&&
index_press_vector
<
0
)
error
->
all
(
FLERR
,
"Thermo style does not use press"
);
if
(
index_press_scalar
>=
0
)
{
delete
[]
id_compute
[
index_press_scalar
];
int
n
=
strlen
(
arg
[
iarg
+
1
])
+
1
;
id_compute
[
index_press_scalar
]
=
new
char
[
n
];
strcpy
(
id_compute
[
index_press_scalar
],
arg
[
iarg
+
1
]);
}
if
(
index_press_vector
>=
0
)
{
delete
[]
id_compute
[
index_press_vector
];
int
n
=
strlen
(
arg
[
iarg
+
1
])
+
1
;
id_compute
[
index_press_vector
]
=
new
char
[
n
];
strcpy
(
id_compute
[
index_press_vector
],
arg
[
iarg
+
1
]);
}
int
icompute
=
modify
->
find_compute
(
arg
[
iarg
+
1
]);
if
(
icompute
<
0
)
error
->
all
(
FLERR
,
"Could not find thermo_modify pressure ID"
);
pressure
=
modify
->
compute
[
icompute
];
if
(
pressure
->
pressflag
==
0
)
error
->
all
(
FLERR
,
"Thermo_modify pressure ID does not compute pressure"
);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"lost"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"ignore"
)
==
0
)
lostflag
=
IGNORE
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"warn"
)
==
0
)
lostflag
=
WARN
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"error"
)
==
0
)
lostflag
=
ERROR
;
else
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"norm"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
normuserflag
=
1
;
if
(
strcmp
(
arg
[
iarg
+
1
],
"no"
)
==
0
)
normuser
=
0
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"yes"
)
==
0
)
normuser
=
1
;
else
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"flush"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"no"
)
==
0
)
flushflag
=
0
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"yes"
)
==
0
)
flushflag
=
1
;
else
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"line"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"one"
)
==
0
)
lineflag
=
ONELINE
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"multi"
)
==
0
)
lineflag
=
MULTILINE
;
else
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"format"
)
==
0
)
{
if
(
iarg
+
3
>
narg
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"int"
)
==
0
)
{
if
(
format_int_user
)
delete
[]
format_int_user
;
int
n
=
strlen
(
arg
[
iarg
+
2
])
+
1
;
format_int_user
=
new
char
[
n
];
strcpy
(
format_int_user
,
arg
[
iarg
+
2
]);
if
(
format_bigint_user
)
delete
[]
format_bigint_user
;
n
=
strlen
(
format_int_user
)
+
3
;
format_bigint_user
=
new
char
[
n
];
char
*
ptr
=
strchr
(
format_int_user
,
'd'
);
if
(
ptr
==
NULL
)
error
->
all
(
FLERR
,
"Thermo_modify int format does not contain d character"
);
*
ptr
=
'\0'
;
sprintf
(
format_bigint_user
,
"%s%s%s"
,
format_int_user
,
BIGINT_FORMAT
,
ptr
+
1
);
*
ptr
=
'd'
;
}
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"float"
)
==
0
)
{
if
(
format_float_user
)
delete
[]
format_float_user
;
int
n
=
strlen
(
arg
[
iarg
+
2
])
+
1
;
format_float_user
=
new
char
[
n
];
strcpy
(
format_float_user
,
arg
[
iarg
+
2
]);
}
else
{
int
i
=
atoi
(
arg
[
iarg
+
1
])
-
1
;
if
(
i
<
0
||
i
>=
nfield_initial
)
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
if
(
format_user
[
i
])
delete
[]
format_user
[
i
];
int
n
=
strlen
(
arg
[
iarg
+
2
])
+
1
;
format_user
[
i
]
=
new
char
[
n
];
strcpy
(
format_user
[
i
],
arg
[
iarg
+
2
]);
}
iarg
+=
3
;
}
else
error
->
all
(
FLERR
,
"Illegal thermo_modify command"
);
}
}
/* ----------------------------------------------------------------------
allocate all per-field memory
------------------------------------------------------------------------- */
void
Thermo
::
allocate
()
{
// n = specified fields + Volume field (added at run time)
int
n
=
nfield_initial
+
1
;
keyword
=
new
char
*
[
n
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
keyword
[
i
]
=
new
char
[
32
];
vfunc
=
new
FnPtr
[
n
];
vtype
=
new
int
[
n
];
format
=
new
char
*
[
n
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
format
[
i
]
=
new
char
[
32
];
format_user
=
new
char
*
[
n
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
format_user
[
i
]
=
NULL
;
field2index
=
new
int
[
n
];
argindex1
=
new
int
[
n
];
argindex2
=
new
int
[
n
];
// factor of 3 is max number of computes a single field can add
ncompute
=
0
;
id_compute
=
new
char
*
[
3
*
n
];
compute_which
=
new
int
[
3
*
n
];
computes
=
new
Compute
*
[
3
*
n
];
nfix
=
0
;
id_fix
=
new
char
*
[
n
];
fixes
=
new
Fix
*
[
n
];
nvariable
=
0
;
id_variable
=
new
char
*
[
n
];
variables
=
new
int
[
n
];
}
/* ----------------------------------------------------------------------
deallocate all per-field memory
------------------------------------------------------------------------- */
void
Thermo
::
deallocate
()
{
int
n
=
nfield_initial
+
1
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
delete
[]
keyword
[
i
];
delete
[]
keyword
;
delete
[]
vfunc
;
delete
[]
vtype
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
delete
[]
format
[
i
];
delete
[]
format
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
delete
[]
format_user
[
i
];
delete
[]
format_user
;
delete
[]
field2index
;
delete
[]
argindex1
;
delete
[]
argindex2
;
for
(
int
i
=
0
;
i
<
ncompute
;
i
++
)
delete
[]
id_compute
[
i
];
delete
[]
id_compute
;
delete
[]
compute_which
;
delete
[]
computes
;
for
(
int
i
=
0
;
i
<
nfix
;
i
++
)
delete
[]
id_fix
[
i
];
delete
[]
id_fix
;
delete
[]
fixes
;
for
(
int
i
=
0
;
i
<
nvariable
;
i
++
)
delete
[]
id_variable
[
i
];
delete
[]
id_variable
;
delete
[]
variables
;
}
/* ----------------------------------------------------------------------
parse list of thermo keywords from str
set compute flags (temp, press, pe, etc)
------------------------------------------------------------------------- */
void
Thermo
::
parse_fields
(
char
*
str
)
{
nfield
=
0
;
// customize a new keyword by adding to if statement
char
*
word
=
strtok
(
str
,
"
\0
"
);
while
(
word
)
{
if
(
strcmp
(
word
,
"step"
)
==
0
)
{
addfield
(
"Step"
,
&
Thermo
::
compute_step
,
BIGINT
);
}
else
if
(
strcmp
(
word
,
"elapsed"
)
==
0
)
{
addfield
(
"Elapsed"
,
&
Thermo
::
compute_elapsed
,
BIGINT
);
}
else
if
(
strcmp
(
word
,
"elaplong"
)
==
0
)
{
addfield
(
"Elaplong"
,
&
Thermo
::
compute_elapsed_long
,
BIGINT
);
}
else
if
(
strcmp
(
word
,
"dt"
)
==
0
)
{
addfield
(
"Dt"
,
&
Thermo
::
compute_dt
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"cpu"
)
==
0
)
{
addfield
(
"CPU"
,
&
Thermo
::
compute_cpu
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"tpcpu"
)
==
0
)
{
addfield
(
"T/CPU"
,
&
Thermo
::
compute_tpcpu
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"spcpu"
)
==
0
)
{
addfield
(
"S/CPU"
,
&
Thermo
::
compute_spcpu
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"atoms"
)
==
0
)
{
addfield
(
"Atoms"
,
&
Thermo
::
compute_atoms
,
BIGINT
);
}
else
if
(
strcmp
(
word
,
"temp"
)
==
0
)
{
addfield
(
"Temp"
,
&
Thermo
::
compute_temp
,
FLOAT
);
index_temp
=
add_compute
(
id_temp
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"press"
)
==
0
)
{
addfield
(
"Press"
,
&
Thermo
::
compute_press
,
FLOAT
);
index_press_scalar
=
add_compute
(
id_press
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"pe"
)
==
0
)
{
addfield
(
"PotEng"
,
&
Thermo
::
compute_pe
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"ke"
)
==
0
)
{
addfield
(
"KinEng"
,
&
Thermo
::
compute_ke
,
FLOAT
);
index_temp
=
add_compute
(
id_temp
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"etotal"
)
==
0
)
{
addfield
(
"TotEng"
,
&
Thermo
::
compute_etotal
,
FLOAT
);
index_temp
=
add_compute
(
id_temp
,
SCALAR
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"enthalpy"
)
==
0
)
{
addfield
(
"Enthalpy"
,
&
Thermo
::
compute_enthalpy
,
FLOAT
);
index_temp
=
add_compute
(
id_temp
,
SCALAR
);
index_press_scalar
=
add_compute
(
id_press
,
SCALAR
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"evdwl"
)
==
0
)
{
addfield
(
"E_vdwl"
,
&
Thermo
::
compute_evdwl
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"ecoul"
)
==
0
)
{
addfield
(
"E_coul"
,
&
Thermo
::
compute_ecoul
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"epair"
)
==
0
)
{
addfield
(
"E_pair"
,
&
Thermo
::
compute_epair
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"ebond"
)
==
0
)
{
addfield
(
"E_bond"
,
&
Thermo
::
compute_ebond
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"eangle"
)
==
0
)
{
addfield
(
"E_angle"
,
&
Thermo
::
compute_eangle
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"edihed"
)
==
0
)
{
addfield
(
"E_dihed"
,
&
Thermo
::
compute_edihed
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"eimp"
)
==
0
)
{
addfield
(
"E_impro"
,
&
Thermo
::
compute_eimp
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"emol"
)
==
0
)
{
addfield
(
"E_mol"
,
&
Thermo
::
compute_emol
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"elong"
)
==
0
)
{
addfield
(
"E_long"
,
&
Thermo
::
compute_elong
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"etail"
)
==
0
)
{
addfield
(
"E_tail"
,
&
Thermo
::
compute_etail
,
FLOAT
);
index_pe
=
add_compute
(
id_pe
,
SCALAR
);
}
else
if
(
strcmp
(
word
,
"vol"
)
==
0
)
{
addfield
(
"Volume"
,
&
Thermo
::
compute_vol
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"lx"
)
==
0
)
{
addfield
(
"Lx"
,
&
Thermo
::
compute_lx
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"ly"
)
==
0
)
{
addfield
(
"Ly"
,
&
Thermo
::
compute_ly
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"lz"
)
==
0
)
{
addfield
(
"Lz"
,
&
Thermo
::
compute_lz
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"xlo"
)
==
0
)
{
addfield
(
"Xlo"
,
&
Thermo
::
compute_xlo
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"xhi"
)
==
0
)
{
addfield
(
"Xhi"
,
&
Thermo
::
compute_xhi
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"ylo"
)
==
0
)
{
addfield
(
"Ylo"
,
&
Thermo
::
compute_ylo
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"yhi"
)
==
0
)
{
addfield
(
"Yhi"
,
&
Thermo
::
compute_yhi
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"zlo"
)
==
0
)
{
addfield
(
"Zlo"
,
&
Thermo
::
compute_zlo
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"zhi"
)
==
0
)
{
addfield
(
"Zhi"
,
&
Thermo
::
compute_zhi
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"xy"
)
==
0
)
{
addfield
(
"Xy"
,
&
Thermo
::
compute_xy
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"xz"
)
==
0
)
{
addfield
(
"Xz"
,
&
Thermo
::
compute_xz
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"yz"
)
==
0
)
{
addfield
(
"Yz"
,
&
Thermo
::
compute_yz
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"xlat"
)
==
0
)
{
if
(
domain
->
lattice
==
NULL
)
error
->
all
(
FLERR
,
"Thermo keyword requires lattice be defined"
);
addfield
(
"Xlat"
,
&
Thermo
::
compute_xlat
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"ylat"
)
==
0
)
{
if
(
domain
->
lattice
==
NULL
)
error
->
all
(
FLERR
,
"Thermo keyword requires lattice be defined"
);
addfield
(
"Ylat"
,
&
Thermo
::
compute_ylat
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"zlat"
)
==
0
)
{
if
(
domain
->
lattice
==
NULL
)
error
->
all
(
FLERR
,
"Thermo keyword requires lattice be defined"
);
addfield
(
"Zlat"
,
&
Thermo
::
compute_zlat
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"pxx"
)
==
0
)
{
addfield
(
"Pxx"
,
&
Thermo
::
compute_pxx
,
FLOAT
);
index_press_vector
=
add_compute
(
id_press
,
VECTOR
);
}
else
if
(
strcmp
(
word
,
"pyy"
)
==
0
)
{
addfield
(
"Pyy"
,
&
Thermo
::
compute_pyy
,
FLOAT
);
index_press_vector
=
add_compute
(
id_press
,
VECTOR
);
}
else
if
(
strcmp
(
word
,
"pzz"
)
==
0
)
{
addfield
(
"Pzz"
,
&
Thermo
::
compute_pzz
,
FLOAT
);
index_press_vector
=
add_compute
(
id_press
,
VECTOR
);
}
else
if
(
strcmp
(
word
,
"pxy"
)
==
0
)
{
addfield
(
"Pxy"
,
&
Thermo
::
compute_pxy
,
FLOAT
);
index_press_vector
=
add_compute
(
id_press
,
VECTOR
);
}
else
if
(
strcmp
(
word
,
"pxz"
)
==
0
)
{
addfield
(
"Pxz"
,
&
Thermo
::
compute_pxz
,
FLOAT
);
index_press_vector
=
add_compute
(
id_press
,
VECTOR
);
}
else
if
(
strcmp
(
word
,
"pyz"
)
==
0
)
{
addfield
(
"Pyz"
,
&
Thermo
::
compute_pyz
,
FLOAT
);
index_press_vector
=
add_compute
(
id_press
,
VECTOR
);
}
else
if
(
strcmp
(
word
,
"fmax"
)
==
0
)
{
addfield
(
"Fmax"
,
&
Thermo
::
compute_fmax
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"fnorm"
)
==
0
)
{
addfield
(
"Fnorm"
,
&
Thermo
::
compute_fnorm
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"cella"
)
==
0
)
{
addfield
(
"Cella"
,
&
Thermo
::
compute_cella
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"cellb"
)
==
0
)
{
addfield
(
"Cellb"
,
&
Thermo
::
compute_cellb
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"cellc"
)
==
0
)
{
addfield
(
"Cellc"
,
&
Thermo
::
compute_cellc
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"cellalpha"
)
==
0
)
{
addfield
(
"CellAlpha"
,
&
Thermo
::
compute_cellalpha
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"cellbeta"
)
==
0
)
{
addfield
(
"CellBeta"
,
&
Thermo
::
compute_cellbeta
,
FLOAT
);
}
else
if
(
strcmp
(
word
,
"cellgamma"
)
==
0
)
{
addfield
(
"CellGamma"
,
&
Thermo
::
compute_cellgamma
,
FLOAT
);
// compute value = c_ID, fix value = f_ID, variable value = v_ID
// count trailing [] and store int arguments
// copy = at most 8 chars of ID to pass to addfield
}
else
if
((
strncmp
(
word
,
"c_"
,
2
)
==
0
)
||
(
strncmp
(
word
,
"f_"
,
2
)
==
0
)
||
(
strncmp
(
word
,
"v_"
,
2
)
==
0
))
{
int
n
=
strlen
(
word
);
char
*
id
=
new
char
[
n
];
strcpy
(
id
,
&
word
[
2
]);
char
copy
[
9
];
strncpy
(
copy
,
id
,
8
);
copy
[
8
]
=
'\0'
;
// parse zero or one or two trailing brackets from ID
// argindex1,argindex2 = int inside each bracket pair, 0 if no bracket
char
*
ptr
=
strchr
(
id
,
'['
);
if
(
ptr
==
NULL
)
argindex1
[
nfield
]
=
0
;
else
{
*
ptr
=
'\0'
;
argindex1
[
nfield
]
=
input
->
variable
->
int_between_brackets
(
ptr
);
ptr
++
;
if
(
*
ptr
==
'['
)
{
argindex2
[
nfield
]
=
input
->
variable
->
int_between_brackets
(
ptr
);
ptr
++
;
}
else
argindex2
[
nfield
]
=
0
;
}
if
(
word
[
0
]
==
'c'
)
{
n
=
modify
->
find_compute
(
id
);
if
(
n
<
0
)
error
->
all
(
FLERR
,
"Could not find thermo custom compute ID"
);
if
(
argindex1
[
nfield
]
==
0
&&
modify
->
compute
[
n
]
->
scalar_flag
==
0
)
error
->
all
(
FLERR
,
"Thermo compute does not compute scalar"
);
if
(
argindex1
[
nfield
]
>
0
&&
argindex2
[
nfield
]
==
0
)
{
if
(
modify
->
compute
[
n
]
->
vector_flag
==
0
)
error
->
all
(
FLERR
,
"Thermo compute does not compute vector"
);
if
(
argindex1
[
nfield
]
>
modify
->
compute
[
n
]
->
size_vector
)
error
->
all
(
FLERR
,
"Thermo compute vector is accessed out-of-range"
);
}
if
(
argindex1
[
nfield
]
>
0
&&
argindex2
[
nfield
]
>
0
)
{
if
(
modify
->
compute
[
n
]
->
array_flag
==
0
)
error
->
all
(
FLERR
,
"Thermo compute does not compute array"
);
if
(
argindex1
[
nfield
]
>
modify
->
compute
[
n
]
->
size_array_rows
||
argindex2
[
nfield
]
>
modify
->
compute
[
n
]
->
size_array_cols
)
error
->
all
(
FLERR
,
"Thermo compute array is accessed out-of-range"
);
}
if
(
argindex1
[
nfield
]
==
0
)
field2index
[
nfield
]
=
add_compute
(
id
,
SCALAR
);
else
if
(
argindex2
[
nfield
]
==
0
)
field2index
[
nfield
]
=
add_compute
(
id
,
VECTOR
);
else
field2index
[
nfield
]
=
add_compute
(
id
,
ARRAY
);
addfield
(
copy
,
&
Thermo
::
compute_compute
,
FLOAT
);
}
else
if
(
word
[
0
]
==
'f'
)
{
n
=
modify
->
find_fix
(
id
);
if
(
n
<
0
)
error
->
all
(
FLERR
,
"Could not find thermo custom fix ID"
);
if
(
argindex1
[
nfield
]
==
0
&&
modify
->
fix
[
n
]
->
scalar_flag
==
0
)
error
->
all
(
FLERR
,
"Thermo fix does not compute scalar"
);
if
(
argindex1
[
nfield
]
>
0
&&
argindex2
[
nfield
]
==
0
)
{
if
(
modify
->
fix
[
n
]
->
vector_flag
==
0
)
error
->
all
(
FLERR
,
"Thermo fix does not compute vector"
);
if
(
argindex1
[
nfield
]
>
modify
->
fix
[
n
]
->
size_vector
)
error
->
all
(
FLERR
,
"Thermo fix vector is accessed out-of-range"
);
}
if
(
argindex1
[
nfield
]
>
0
&&
argindex2
[
nfield
]
>
0
)
{
if
(
modify
->
fix
[
n
]
->
array_flag
==
0
)
error
->
all
(
FLERR
,
"Thermo fix does not compute array"
);
if
(
argindex1
[
nfield
]
>
modify
->
fix
[
n
]
->
size_array_rows
||
argindex2
[
nfield
]
>
modify
->
fix
[
n
]
->
size_array_cols
)
error
->
all
(
FLERR
,
"Thermo fix array is accessed out-of-range"
);
}
field2index
[
nfield
]
=
add_fix
(
id
);
addfield
(
copy
,
&
Thermo
::
compute_fix
,
FLOAT
);
}
else
if
(
word
[
0
]
==
'v'
)
{
n
=
input
->
variable
->
find
(
id
);
if
(
n
<
0
)
error
->
all
(
FLERR
,
"Could not find thermo custom variable name"
);
if
(
input
->
variable
->
equalstyle
(
n
)
==
0
)
error
->
all
(
FLERR
,
"Thermo custom variable is not equal-style variable"
);
if
(
argindex1
[
nfield
])
error
->
all
(
FLERR
,
"Thermo custom variable cannot be indexed"
);
field2index
[
nfield
]
=
add_variable
(
id
);
addfield
(
copy
,
&
Thermo
::
compute_variable
,
FLOAT
);
}
delete
[]
id
;
}
else
error
->
all
(
FLERR
,
"Invalid keyword in thermo_style custom command"
);
word
=
strtok
(
NULL
,
"
\0
"
);
}
}
/* ----------------------------------------------------------------------
add field to list of quantities to print
------------------------------------------------------------------------- */
void
Thermo
::
addfield
(
const
char
*
key
,
FnPtr
func
,
int
typeflag
)
{
strcpy
(
keyword
[
nfield
],
key
);
vfunc
[
nfield
]
=
func
;
vtype
[
nfield
]
=
typeflag
;
nfield
++
;
}
/* ----------------------------------------------------------------------
add compute ID to list of Compute objects to call
return location of where this Compute is in list
if already in list with same which, do not add, just return index
------------------------------------------------------------------------- */
int
Thermo
::
add_compute
(
const
char
*
id
,
int
which
)
{
int
icompute
;
for
(
icompute
=
0
;
icompute
<
ncompute
;
icompute
++
)
if
((
strcmp
(
id
,
id_compute
[
icompute
])
==
0
)
&&
which
==
compute_which
[
icompute
])
break
;
if
(
icompute
<
ncompute
)
return
icompute
;
int
n
=
strlen
(
id
)
+
1
;
id_compute
[
ncompute
]
=
new
char
[
n
];
strcpy
(
id_compute
[
ncompute
],
id
);
compute_which
[
ncompute
]
=
which
;
ncompute
++
;
return
ncompute
-
1
;
}
/* ----------------------------------------------------------------------
add fix ID to list of Fix objects to call
------------------------------------------------------------------------- */
int
Thermo
::
add_fix
(
const
char
*
id
)
{
int
n
=
strlen
(
id
)
+
1
;
id_fix
[
nfix
]
=
new
char
[
n
];
strcpy
(
id_fix
[
nfix
],
id
);
nfix
++
;
return
nfix
-
1
;
}
/* ----------------------------------------------------------------------
add variable ID to list of Variables to evaluate
------------------------------------------------------------------------- */
int
Thermo
::
add_variable
(
const
char
*
id
)
{
int
n
=
strlen
(
id
)
+
1
;
id_variable
[
nvariable
]
=
new
char
[
n
];
strcpy
(
id_variable
[
nvariable
],
id
);
nvariable
++
;
return
nvariable
-
1
;
}
/* ----------------------------------------------------------------------
compute a single thermodyanmic value, word is any keyword in custom list
called when a variable is evaluated by Variable class
return value as double in answer
return 0 if str is recoginzed keyword, 1 if unrecognized
customize a new keyword by adding to if statement
------------------------------------------------------------------------- */
int
Thermo
::
evaluate_keyword
(
char
*
word
,
double
*
answer
)
{
// turn off normflag if natoms = 0 to avoid divide by 0
// normflag must be set for lo-level thermo routines that may be invoked
natoms
=
atom
->
natoms
;
if
(
natoms
==
0
)
normflag
=
0
;
else
normflag
=
normvalue
;
// invoke a lo-level thermo routine to compute the variable value
// if keyword requires a compute, error if thermo doesn't use the compute
// if inbetween runs and needed compute is not current, error
// if in middle of run and needed compute is not current, invoke it
// for keywords that use pe indirectly (evdwl, ebond, etc):
// check if energy was tallied on this timestep and set pe->invoked_flag
// this will trigger next timestep for energy tallying via addstep()
if
(
strcmp
(
word
,
"step"
)
==
0
)
{
compute_step
();
dvalue
=
bivalue
;
}
else
if
(
strcmp
(
word
,
"elapsed"
)
==
0
)
{
if
(
update
->
whichflag
==
0
)
error
->
all
(
FLERR
,
"This variable thermo keyword cannot be used between runs"
);
compute_elapsed
();
dvalue
=
bivalue
;
}
else
if
(
strcmp
(
word
,
"elaplong"
)
==
0
)
{
if
(
update
->
whichflag
==
0
)
error
->
all
(
FLERR
,
"This variable thermo keyword cannot be used between runs"
);
compute_elapsed_long
();
dvalue
=
bivalue
;
}
else
if
(
strcmp
(
word
,
"dt"
)
==
0
)
{
compute_dt
();
}
else
if
(
strcmp
(
word
,
"cpu"
)
==
0
)
{
if
(
update
->
whichflag
==
0
)
error
->
all
(
FLERR
,
"This variable thermo keyword cannot be used between runs"
);
compute_cpu
();
}
else
if
(
strcmp
(
word
,
"tpcpu"
)
==
0
)
{
if
(
update
->
whichflag
==
0
)
error
->
all
(
FLERR
,
"This variable thermo keyword cannot be used between runs"
);
compute_tpcpu
();
}
else
if
(
strcmp
(
word
,
"spcpu"
)
==
0
)
{
if
(
update
->
whichflag
==
0
)
error
->
all
(
FLERR
,
"This variable thermo keyword cannot be used between runs"
);
compute_spcpu
();
}
else
if
(
strcmp
(
word
,
"atoms"
)
==
0
)
{
compute_atoms
();
dvalue
=
bivalue
;
}
else
if
(
strcmp
(
word
,
"temp"
)
==
0
)
{
if
(
!
temperature
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init temp"
);
if
(
update
->
whichflag
==
0
)
{
if
(
temperature
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
temperature
->
invoked_flag
&
INVOKED_SCALAR
))
{
temperature
->
compute_scalar
();
temperature
->
invoked_flag
|=
INVOKED_SCALAR
;
}
compute_temp
();
}
else
if
(
strcmp
(
word
,
"press"
)
==
0
)
{
if
(
!
pressure
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init press"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pressure
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pressure
->
invoked_flag
&
INVOKED_SCALAR
))
{
pressure
->
compute_scalar
();
pressure
->
invoked_flag
|=
INVOKED_SCALAR
;
}
compute_press
();
}
else
if
(
strcmp
(
word
,
"pe"
)
==
0
)
{
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pe
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pe
->
invoked_flag
&
INVOKED_SCALAR
))
{
pe
->
compute_scalar
();
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
}
compute_pe
();
}
else
if
(
strcmp
(
word
,
"ke"
)
==
0
)
{
if
(
!
temperature
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init temp"
);
if
(
update
->
whichflag
==
0
)
{
if
(
temperature
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
temperature
->
invoked_flag
&
INVOKED_SCALAR
))
{
temperature
->
compute_scalar
();
temperature
->
invoked_flag
|=
INVOKED_SCALAR
;
}
compute_ke
();
}
else
if
(
strcmp
(
word
,
"etotal"
)
==
0
)
{
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pe
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pe
->
invoked_flag
&
INVOKED_SCALAR
))
{
pe
->
compute_scalar
();
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
}
if
(
!
temperature
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init temp"
);
if
(
update
->
whichflag
==
0
)
{
if
(
temperature
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
temperature
->
invoked_flag
&
INVOKED_SCALAR
))
{
temperature
->
compute_scalar
();
temperature
->
invoked_flag
|=
INVOKED_SCALAR
;
}
compute_etotal
();
}
else
if
(
strcmp
(
word
,
"enthalpy"
)
==
0
)
{
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pe
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pe
->
invoked_flag
&
INVOKED_SCALAR
))
{
pe
->
compute_scalar
();
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
}
if
(
!
temperature
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init temp"
);
if
(
update
->
whichflag
==
0
)
{
if
(
temperature
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
temperature
->
invoked_flag
&
INVOKED_SCALAR
))
{
temperature
->
compute_scalar
();
temperature
->
invoked_flag
|=
INVOKED_SCALAR
;
}
if
(
!
pressure
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init press"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pressure
->
invoked_scalar
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pressure
->
invoked_flag
&
INVOKED_SCALAR
))
{
pressure
->
compute_scalar
();
pressure
->
invoked_flag
|=
INVOKED_SCALAR
;
}
compute_enthalpy
();
}
else
if
(
strcmp
(
word
,
"evdwl"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_evdwl
();
}
else
if
(
strcmp
(
word
,
"ecoul"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_ecoul
();
}
else
if
(
strcmp
(
word
,
"epair"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_epair
();
}
else
if
(
strcmp
(
word
,
"ebond"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_ebond
();
}
else
if
(
strcmp
(
word
,
"eangle"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_eangle
();
}
else
if
(
strcmp
(
word
,
"edihed"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_edihed
();
}
else
if
(
strcmp
(
word
,
"eimp"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_eimp
();
}
else
if
(
strcmp
(
word
,
"emol"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_emol
();
}
else
if
(
strcmp
(
word
,
"elong"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_elong
();
}
else
if
(
strcmp
(
word
,
"etail"
)
==
0
)
{
if
(
update
->
eflag_global
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Energy was not tallied on needed timestep"
);
if
(
!
pe
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires thermo to use/init pe"
);
pe
->
invoked_flag
|=
INVOKED_SCALAR
;
compute_etail
();
}
else
if
(
strcmp
(
word
,
"vol"
)
==
0
)
compute_vol
();
else
if
(
strcmp
(
word
,
"lx"
)
==
0
)
compute_lx
();
else
if
(
strcmp
(
word
,
"ly"
)
==
0
)
compute_ly
();
else
if
(
strcmp
(
word
,
"lz"
)
==
0
)
compute_lz
();
else
if
(
strcmp
(
word
,
"xlo"
)
==
0
)
compute_xlo
();
else
if
(
strcmp
(
word
,
"xhi"
)
==
0
)
compute_xhi
();
else
if
(
strcmp
(
word
,
"ylo"
)
==
0
)
compute_ylo
();
else
if
(
strcmp
(
word
,
"yhi"
)
==
0
)
compute_yhi
();
else
if
(
strcmp
(
word
,
"zlo"
)
==
0
)
compute_zlo
();
else
if
(
strcmp
(
word
,
"zhi"
)
==
0
)
compute_zhi
();
else
if
(
strcmp
(
word
,
"xy"
)
==
0
)
compute_xy
();
else
if
(
strcmp
(
word
,
"xz"
)
==
0
)
compute_xz
();
else
if
(
strcmp
(
word
,
"yz"
)
==
0
)
compute_yz
();
else
if
(
strcmp
(
word
,
"xlat"
)
==
0
)
{
if
(
domain
->
lattice
==
NULL
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires lattice be defined"
);
compute_xlat
();
}
else
if
(
strcmp
(
word
,
"ylat"
)
==
0
)
{
if
(
domain
->
lattice
==
NULL
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires lattice be defined"
);
compute_ylat
();
}
else
if
(
strcmp
(
word
,
"zlat"
)
==
0
)
{
if
(
domain
->
lattice
==
NULL
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires lattice be defined"
);
compute_zlat
();
}
else
if
(
strcmp
(
word
,
"pxx"
)
==
0
)
{
if
(
!
pressure
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init press"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pressure
->
invoked_vector
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pressure
->
invoked_flag
&
INVOKED_VECTOR
))
{
pressure
->
compute_vector
();
pressure
->
invoked_flag
|=
INVOKED_VECTOR
;
}
compute_pxx
();
}
else
if
(
strcmp
(
word
,
"pyy"
)
==
0
)
{
if
(
!
pressure
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init press"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pressure
->
invoked_vector
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pressure
->
invoked_flag
&
INVOKED_VECTOR
))
{
pressure
->
compute_vector
();
pressure
->
invoked_flag
|=
INVOKED_VECTOR
;
}
compute_pyy
();
}
else
if
(
strcmp
(
word
,
"pzz"
)
==
0
)
{
if
(
!
pressure
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init press"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pressure
->
invoked_vector
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pressure
->
invoked_flag
&
INVOKED_VECTOR
))
{
pressure
->
compute_vector
();
pressure
->
invoked_flag
|=
INVOKED_VECTOR
;
}
compute_pzz
();
}
else
if
(
strcmp
(
word
,
"pxy"
)
==
0
)
{
if
(
!
pressure
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init press"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pressure
->
invoked_vector
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pressure
->
invoked_flag
&
INVOKED_VECTOR
))
{
pressure
->
compute_vector
();
pressure
->
invoked_flag
|=
INVOKED_VECTOR
;
}
compute_pxy
();
}
else
if
(
strcmp
(
word
,
"pxz"
)
==
0
)
{
if
(
!
pressure
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init press"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pressure
->
invoked_vector
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pressure
->
invoked_flag
&
INVOKED_VECTOR
))
{
pressure
->
compute_vector
();
pressure
->
invoked_flag
|=
INVOKED_VECTOR
;
}
compute_pxz
();
}
else
if
(
strcmp
(
word
,
"pyz"
)
==
0
)
{
if
(
!
pressure
)
error
->
all
(
FLERR
,
"Thermo keyword in variable requires "
"thermo to use/init press"
);
if
(
update
->
whichflag
==
0
)
{
if
(
pressure
->
invoked_vector
!=
update
->
ntimestep
)
error
->
all
(
FLERR
,
"Compute used in variable thermo keyword between runs "
"is not current"
);
}
else
if
(
!
(
pressure
->
invoked_flag
&
INVOKED_VECTOR
))
{
pressure
->
compute_vector
();
pressure
->
invoked_flag
|=
INVOKED_VECTOR
;
}
compute_pyz
();
}
else
if
(
strcmp
(
word
,
"fmax"
)
==
0
)
compute_fmax
();
else
if
(
strcmp
(
word
,
"fnorm"
)
==
0
)
compute_fnorm
();
else
if
(
strcmp
(
word
,
"cella"
)
==
0
)
compute_cella
();
else
if
(
strcmp
(
word
,
"cellb"
)
==
0
)
compute_cellb
();
else
if
(
strcmp
(
word
,
"cellc"
)
==
0
)
compute_cellc
();
else
if
(
strcmp
(
word
,
"cellalpha"
)
==
0
)
compute_cellalpha
();
else
if
(
strcmp
(
word
,
"cellbeta"
)
==
0
)
compute_cellbeta
();
else
if
(
strcmp
(
word
,
"cellgamma"
)
==
0
)
compute_cellgamma
();
else
return
1
;
*
answer
=
dvalue
;
return
0
;
}
/* ----------------------------------------------------------------------
extraction of Compute, Fix, Variable results
compute/fix are normalized by atoms if returning extensive value
variable value is not normalized (formula should normalize if desired)
------------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_compute
()
{
int
m
=
field2index
[
ifield
];
Compute
*
compute
=
computes
[
m
];
if
(
compute_which
[
m
]
==
SCALAR
)
{
dvalue
=
compute
->
scalar
;
if
(
normflag
&&
compute
->
extscalar
)
dvalue
/=
natoms
;
}
else
if
(
compute_which
[
m
]
==
VECTOR
)
{
dvalue
=
compute
->
vector
[
argindex1
[
ifield
]
-
1
];
if
(
normflag
)
{
if
(
compute
->
extvector
==
0
)
return
;
else
if
(
compute
->
extvector
==
1
)
dvalue
/=
natoms
;
else
if
(
compute
->
extlist
[
argindex1
[
ifield
]
-
1
])
dvalue
/=
natoms
;
}
}
else
{
dvalue
=
compute
->
array
[
argindex1
[
ifield
]
-
1
][
argindex2
[
ifield
]
-
1
];
if
(
normflag
&&
compute
->
extarray
)
dvalue
/=
natoms
;
}
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_fix
()
{
int
m
=
field2index
[
ifield
];
Fix
*
fix
=
fixes
[
m
];
if
(
argindex1
[
ifield
]
==
0
)
{
dvalue
=
fix
->
compute_scalar
();
if
(
normflag
&&
fix
->
extscalar
)
dvalue
/=
natoms
;
}
else
if
(
argindex2
[
ifield
]
==
0
)
{
dvalue
=
fix
->
compute_vector
(
argindex1
[
ifield
]
-
1
);
if
(
normflag
)
{
if
(
fix
->
extvector
==
0
)
return
;
else
if
(
fix
->
extvector
==
1
)
dvalue
/=
natoms
;
else
if
(
fix
->
extlist
[
argindex1
[
ifield
]
-
1
])
dvalue
/=
natoms
;
}
}
else
{
dvalue
=
fix
->
compute_array
(
argindex1
[
ifield
]
-
1
,
argindex2
[
ifield
]
-
1
);
if
(
normflag
&&
fix
->
extarray
)
dvalue
/=
natoms
;
}
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_variable
()
{
dvalue
=
input
->
variable
->
compute_equal
(
variables
[
field2index
[
ifield
]]);
}
/* ----------------------------------------------------------------------
one method for every keyword thermo can output
called by compute() or evaluate_keyword()
compute will have already been called
set ivalue/dvalue/bivalue if value is int/double/bigint
customize a new keyword by adding a method
------------------------------------------------------------------------- */
void
Thermo
::
compute_step
()
{
bivalue
=
update
->
ntimestep
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_elapsed
()
{
bivalue
=
update
->
ntimestep
-
update
->
firststep
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_elapsed_long
()
{
bivalue
=
update
->
ntimestep
-
update
->
beginstep
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_dt
()
{
dvalue
=
update
->
dt
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_cpu
()
{
if
(
firststep
==
0
)
dvalue
=
0.0
;
else
dvalue
=
timer
->
elapsed
(
Timer
::
LOOP
);
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_tpcpu
()
{
double
new_cpu
;
double
new_time
=
update
->
ntimestep
*
update
->
dt
;
if
(
firststep
==
0
)
{
new_cpu
=
0.0
;
dvalue
=
0.0
;
}
else
{
new_cpu
=
timer
->
elapsed
(
Timer
::
LOOP
);
double
cpu_diff
=
new_cpu
-
last_tpcpu
;
double
time_diff
=
new_time
-
last_time
;
if
(
time_diff
>
0.0
&&
cpu_diff
>
0.0
)
dvalue
=
time_diff
/
cpu_diff
;
else
dvalue
=
0.0
;
}
last_time
=
new_time
;
last_tpcpu
=
new_cpu
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_spcpu
()
{
double
new_cpu
;
int
new_step
=
update
->
ntimestep
;
if
(
firststep
==
0
)
{
new_cpu
=
0.0
;
dvalue
=
0.0
;
}
else
{
new_cpu
=
timer
->
elapsed
(
Timer
::
LOOP
);
double
cpu_diff
=
new_cpu
-
last_spcpu
;
int
step_diff
=
new_step
-
last_step
;
if
(
cpu_diff
>
0.0
)
dvalue
=
step_diff
/
cpu_diff
;
else
dvalue
=
0.0
;
}
last_step
=
new_step
;
last_spcpu
=
new_cpu
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_atoms
()
{
bivalue
=
atom
->
natoms
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_temp
()
{
dvalue
=
temperature
->
scalar
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_press
()
{
dvalue
=
pressure
->
scalar
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_pe
()
{
dvalue
=
pe
->
scalar
;
if
(
normflag
)
dvalue
/=
natoms
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_ke
()
{
dvalue
=
temperature
->
scalar
;
dvalue
*=
0.5
*
temperature
->
dof
*
force
->
boltz
;
if
(
normflag
)
dvalue
/=
natoms
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_etotal
()
{
compute_pe
();
double
ke
=
temperature
->
scalar
;
ke
*=
0.5
*
temperature
->
dof
*
force
->
boltz
;
if
(
normflag
)
ke
/=
natoms
;
dvalue
+=
ke
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_enthalpy
()
{
compute_etotal
();
double
etmp
=
dvalue
;
compute_vol
();
double
vtmp
=
dvalue
;
if
(
normflag
)
vtmp
/=
natoms
;
compute_press
();
double
ptmp
=
dvalue
;
dvalue
=
etmp
+
ptmp
*
vtmp
/
(
force
->
nktv2p
);
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_evdwl
()
{
double
tmp
=
0.0
;
if
(
force
->
pair
)
tmp
+=
force
->
pair
->
eng_vdwl
;
MPI_Allreduce
(
&
tmp
,
&
dvalue
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
force
->
pair
&&
force
->
pair
->
tail_flag
)
{
double
volume
=
domain
->
xprd
*
domain
->
yprd
*
domain
->
zprd
;
dvalue
+=
force
->
pair
->
etail
/
volume
;
}
if
(
normflag
)
dvalue
/=
natoms
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_ecoul
()
{
double
tmp
=
0.0
;
if
(
force
->
pair
)
tmp
+=
force
->
pair
->
eng_coul
;
MPI_Allreduce
(
&
tmp
,
&
dvalue
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
normflag
)
dvalue
/=
natoms
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_epair
()
{
double
tmp
=
0.0
;
if
(
force
->
pair
)
tmp
+=
force
->
pair
->
eng_vdwl
+
force
->
pair
->
eng_coul
;
MPI_Allreduce
(
&
tmp
,
&
dvalue
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
force
->
kspace
)
dvalue
+=
force
->
kspace
->
energy
;
if
(
force
->
pair
&&
force
->
pair
->
tail_flag
)
{
double
volume
=
domain
->
xprd
*
domain
->
yprd
*
domain
->
zprd
;
dvalue
+=
force
->
pair
->
etail
/
volume
;
}
if
(
normflag
)
dvalue
/=
natoms
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_ebond
()
{
if
(
force
->
bond
)
{
double
tmp
=
force
->
bond
->
energy
;
MPI_Allreduce
(
&
tmp
,
&
dvalue
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
normflag
)
dvalue
/=
natoms
;
}
else
dvalue
=
0.0
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_eangle
()
{
if
(
force
->
angle
)
{
double
tmp
=
force
->
angle
->
energy
;
MPI_Allreduce
(
&
tmp
,
&
dvalue
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
normflag
)
dvalue
/=
natoms
;
}
else
dvalue
=
0.0
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_edihed
()
{
if
(
force
->
dihedral
)
{
double
tmp
=
force
->
dihedral
->
energy
;
MPI_Allreduce
(
&
tmp
,
&
dvalue
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
normflag
)
dvalue
/=
natoms
;
}
else
dvalue
=
0.0
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_eimp
()
{
if
(
force
->
improper
)
{
double
tmp
=
force
->
improper
->
energy
;
MPI_Allreduce
(
&
tmp
,
&
dvalue
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
normflag
)
dvalue
/=
natoms
;
}
else
dvalue
=
0.0
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_emol
()
{
double
tmp
=
0.0
;
if
(
atom
->
molecular
)
{
if
(
force
->
bond
)
tmp
+=
force
->
bond
->
energy
;
if
(
force
->
angle
)
tmp
+=
force
->
angle
->
energy
;
if
(
force
->
dihedral
)
tmp
+=
force
->
dihedral
->
energy
;
if
(
force
->
improper
)
tmp
+=
force
->
improper
->
energy
;
MPI_Allreduce
(
&
tmp
,
&
dvalue
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
normflag
)
dvalue
/=
natoms
;
}
else
dvalue
=
0.0
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_elong
()
{
if
(
force
->
kspace
)
{
dvalue
=
force
->
kspace
->
energy
;
if
(
normflag
)
dvalue
/=
natoms
;
}
else
dvalue
=
0.0
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_etail
()
{
if
(
force
->
pair
&&
force
->
pair
->
tail_flag
)
{
double
volume
=
domain
->
xprd
*
domain
->
yprd
*
domain
->
zprd
;
dvalue
=
force
->
pair
->
etail
/
volume
;
if
(
normflag
)
dvalue
/=
natoms
;
}
else
dvalue
=
0.0
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_vol
()
{
if
(
domain
->
dimension
==
3
)
dvalue
=
domain
->
xprd
*
domain
->
yprd
*
domain
->
zprd
;
else
dvalue
=
domain
->
xprd
*
domain
->
yprd
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_lx
()
{
dvalue
=
domain
->
xprd
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_ly
()
{
dvalue
=
domain
->
yprd
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_lz
()
{
dvalue
=
domain
->
zprd
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_xlo
()
{
dvalue
=
domain
->
boxlo
[
0
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_xhi
()
{
dvalue
=
domain
->
boxhi
[
0
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_ylo
()
{
dvalue
=
domain
->
boxlo
[
1
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_yhi
()
{
dvalue
=
domain
->
boxhi
[
1
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_zlo
()
{
dvalue
=
domain
->
boxlo
[
2
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_zhi
()
{
dvalue
=
domain
->
boxhi
[
2
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_xy
()
{
dvalue
=
domain
->
xy
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_xz
()
{
dvalue
=
domain
->
xz
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_yz
()
{
dvalue
=
domain
->
yz
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_xlat
()
{
dvalue
=
domain
->
lattice
->
xlattice
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_ylat
()
{
dvalue
=
domain
->
lattice
->
ylattice
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_zlat
()
{
dvalue
=
domain
->
lattice
->
zlattice
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_pxx
()
{
dvalue
=
pressure
->
vector
[
0
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_pyy
()
{
dvalue
=
pressure
->
vector
[
1
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_pzz
()
{
dvalue
=
pressure
->
vector
[
2
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_pxy
()
{
dvalue
=
pressure
->
vector
[
3
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_pxz
()
{
dvalue
=
pressure
->
vector
[
4
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_pyz
()
{
dvalue
=
pressure
->
vector
[
5
];
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_fmax
()
{
double
**
f
=
atom
->
f
;
int
nlocal
=
atom
->
nlocal
;
double
max
=
0.0
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
{
max
=
MAX
(
max
,
fabs
(
f
[
i
][
0
]));
max
=
MAX
(
max
,
fabs
(
f
[
i
][
1
]));
max
=
MAX
(
max
,
fabs
(
f
[
i
][
2
]));
}
double
maxall
;
MPI_Allreduce
(
&
max
,
&
maxall
,
1
,
MPI_DOUBLE
,
MPI_MAX
,
world
);
dvalue
=
maxall
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_fnorm
()
{
double
**
f
=
atom
->
f
;
int
nlocal
=
atom
->
nlocal
;
double
dot
=
0.0
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
dot
+=
f
[
i
][
0
]
*
f
[
i
][
0
]
+
f
[
i
][
1
]
*
f
[
i
][
1
]
+
f
[
i
][
2
]
*
f
[
i
][
2
];
double
dotall
;
MPI_Allreduce
(
&
dot
,
&
dotall
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
dvalue
=
sqrt
(
dotall
);
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_cella
()
{
dvalue
=
domain
->
xprd
;
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_cellb
()
{
if
(
!
domain
->
triclinic
)
dvalue
=
domain
->
yprd
;
else
{
double
*
h
=
domain
->
h
;
dvalue
=
sqrt
(
h
[
1
]
*
h
[
1
]
+
h
[
5
]
*
h
[
5
]);
}
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_cellc
()
{
if
(
!
domain
->
triclinic
)
dvalue
=
domain
->
zprd
;
else
{
double
*
h
=
domain
->
h
;
dvalue
=
sqrt
(
h
[
2
]
*
h
[
2
]
+
h
[
3
]
*
h
[
3
]
+
h
[
4
]
*
h
[
4
]);
}
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_cellalpha
()
{
if
(
!
domain
->
triclinic
)
dvalue
=
90.0
;
else
{
// Cos(alpha) = (xy.xz + ly.yz)/(b.c)
double
*
h
=
domain
->
h
;
double
cosalpha
=
(
h
[
5
]
*
h
[
4
]
+
h
[
1
]
*
h
[
3
])
/
sqrt
((
h
[
1
]
*
h
[
1
]
+
h
[
5
]
*
h
[
5
])
*
(
h
[
2
]
*
h
[
2
]
+
h
[
3
]
*
h
[
3
]
+
h
[
4
]
*
h
[
4
]));
dvalue
=
acos
(
cosalpha
)
*
180.0
/
MY_PI
;
}
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_cellbeta
()
{
if
(
!
domain
->
triclinic
)
dvalue
=
90.0
;
else
{
// Cos(beta) = xz/c
double
*
h
=
domain
->
h
;
double
cosbeta
=
h
[
4
]
/
sqrt
(
h
[
2
]
*
h
[
2
]
+
h
[
3
]
*
h
[
3
]
+
h
[
4
]
*
h
[
4
]);
dvalue
=
acos
(
cosbeta
)
*
180.0
/
MY_PI
;
}
}
/* ---------------------------------------------------------------------- */
void
Thermo
::
compute_cellgamma
()
{
if
(
!
domain
->
triclinic
)
dvalue
=
90.0
;
else
{
// Cos(gamma) = xy/b
double
*
h
=
domain
->
h
;
double
cosgamma
=
h
[
5
]
/
sqrt
(
h
[
1
]
*
h
[
1
]
+
h
[
5
]
*
h
[
5
]);
dvalue
=
acos
(
cosgamma
)
*
180.0
/
MY_PI
;
}
}
Event Timeline
Log In to Comment