Page MenuHomec4science

python_mpi_material_linear_elastic4_test.py
No OneTemporary

File Metadata

Created
Sat, Nov 2, 14:00

python_mpi_material_linear_elastic4_test.py

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
"""
@file python_mpi_material_linear_elastic4_test.py
@author Richard Leute <richard.leute@imtek.uni-freiburg.de>
@date 27 Mar 2018
@brief test MPI-parallel linear elastic material
@section LICENSE
Copyright © 2018 Till Junge
µSpectre is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3, or (at
your option) any later version.
µSpectre is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
"""
try:
from mpi4py import MPI
except ImportError:
MPI = None
import unittest
import numpy as np
from python_test_imports import µ
def build_test_classes(fft):
class MaterialLinearElastic4_Check(unittest.TestCase):
"""
Check the implementation of storing the first and second Lame constant in
each cell. Assign the same Youngs modulus and Poisson ratio to each cell,
from which the two Lame constants are internally computed. Then calculate
the stress and compare the result with stress=2*mu*Del0 (Hooke law for small
symmetric strains).
"""
def setUp(self):
self.resolution = [7,7]
self.lengths = [2.3, 3.9]
self.formulation = µ.Formulation.small_strain
self.sys = µ.Cell(self.resolution,
self.lengths,
self.formulation,
fft=fft,
communicator=MPI.COMM_WORLD)
self.mat = µ.material.MaterialLinearElastic4_2d.make(
self.sys, "material")
def test_solver(self):
Youngs_modulus = 10.
Poisson_ratio = 0.3
for i, pixel in enumerate(self.sys):
self.mat.add_pixel(pixel, Youngs_modulus, Poisson_ratio)
self.sys.initialise()
tol = 1e-6
Del0 = np.array([[0, 0.025],
[0.025, 0]])
maxiter = 100
verbose = 1
solver=µ.solvers.SolverCG(self.sys, tol, maxiter, verbose)
r = µ.solvers.newton_cg(self.sys, Del0,
solver, tol, tol, verbose)
#compare the computed stress with the trivial by hand computed stress
mu = (Youngs_modulus/(2*(1+Poisson_ratio)))
stress = 2*mu*Del0
self.assertLess(np.linalg.norm(r.stress-stress.reshape(-1,1)), 1e-8)
return MaterialLinearElastic4_Check
linear_elastic4 = {}
for fft, is_parallel in µ.fft.fft_engines:
if is_parallel:
linear_elastic4[fft] = build_test_classes(fft)
if __name__ == "__main__":
unittest.main()

Event Timeline