Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92366729
material_hyper_elasto_plastic1.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 19, 17:56
Size
10 KB
Mime Type
text/x-c
Expires
Thu, Nov 21, 17:56 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22392231
Attached To
rMUSPECTRE µSpectre
material_hyper_elasto_plastic1.hh
View Options
/**
* @file material_hyper_elasto_plastic1.hh
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 20 Feb 2018
*
* @brief Material for logarithmic hyperelasto-plasticity, as defined in de
* Geus 2017 (https://doi.org/10.1016/j.cma.2016.12.032) and further
* explained in Geers 2003 (https://doi.org/10.1016/j.cma.2003.07.014)
*
* Copyright © 2018 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef MATERIAL_HYPER_ELASTO_PLASTIC1_H
#define MATERIAL_HYPER_ELASTO_PLASTIC1_H
#include "materials/material_muSpectre_base.hh"
#include "materials/materials_toolbox.hh"
#include "common/eigen_tools.hh"
#include <algorithm>
namespace
muSpectre
{
template
<
Dim_t
DimS
,
Dim_t
DimM
>
class
MaterialHyperElastoPlastic1
;
/**
* traits for hyper-elastoplastic material
*/
template
<
Dim_t
DimS
,
Dim_t
DimM
>
struct
MaterialMuSpectre_traits
<
MaterialHyperElastoPlastic1
<
DimS
,
DimM
>>
{
//! global field collection
using
GFieldCollection_t
=
typename
MaterialBase
<
DimS
,
DimM
>::
GFieldCollection_t
;
//! expected map type for strain fields
using
StrainMap_t
=
MatrixFieldMap
<
GFieldCollection_t
,
Real
,
DimM
,
DimM
,
true
>
;
//! expected map type for stress fields
using
StressMap_t
=
MatrixFieldMap
<
GFieldCollection_t
,
Real
,
DimM
,
DimM
>
;
//! expected map type for tangent stiffness fields
using
TangentMap_t
=
T4MatrixFieldMap
<
GFieldCollection_t
,
Real
,
DimM
>
;
//! declare what type of strain measure your law takes as input
constexpr
static
auto
strain_measure
{
StrainMeasure
::
Gradient
};
//! declare what type of stress measure your law yields as output
constexpr
static
auto
stress_measure
{
StressMeasure
::
Kirchhoff
};
//! local field collection used for internals
using
LFieldColl_t
=
LocalFieldCollection
<
DimS
,
DimM
>
;
//! storage type for plastic flow measure (εₚ in the papers)
using
ScalarMap_t
=
ScalarFieldMap
<
LFieldColl_t
,
Real
>
;
/**
* storage type for for previous gradient Fᵗ and elastic left
* Cauchy-Green deformation tensor bₑᵗ
*/
using
LStrainMap_t
=
MatrixFieldMap
<
LFieldColl_t
,
Real
,
DimM
,
DimM
,
false
>
;
/**
* format in which to receive internals (previous gradient Fᵗ,
* previous elastic lef Cauchy-Green deformation tensor bₑᵗ, and
* the plastic flow measure εₚ
*/
using
InternalVariables
=
std
::
tuple
<
LStrainMap_t
,
LStrainMap_t
,
ScalarMap_t
>
;
};
/**
* Material implementation for hyper-elastoplastic constitutive law
*/
template
<
Dim_t
DimS
,
Dim_t
DimM
=
DimS
>
class
MaterialHyperElastoPlastic1
:
public
MaterialMuSpectre
<
MaterialHyperElastoPlastic1
<
DimS
,
DimM
>
,
DimS
,
DimM
>
{
public
:
//! base class
using
Parent
=
MaterialMuSpectre
<
MaterialHyperElastoPlastic1
<
DimS
,
DimM
>
,
DimS
,
DimM
>
;
/**
* type used to determine whether the
* `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only
* stresses or also tangent stiffnesses
*/
using
NeedTangent
=
typename
Parent
::
NeedTangent
;
//! shortcut to traits
using
traits
=
MaterialMuSpectre_traits
<
MaterialHyperElastoPlastic1
>
;
//! Hooke's law implementation
using
Hooke
=
typename
MatTB
::
Hooke
<
DimM
,
typename
traits
::
StrainMap_t
::
reference
,
typename
traits
::
TangentMap_t
::
reference
>
;
//! type in which the previous strain is referenced
using
StrainRef_t
=
typename
traits
::
LStrainMap_t
::
reference
;
//! Default constructor
MaterialHyperElastoPlastic1
()
=
delete
;
//! Constructor with name and material properties
MaterialHyperElastoPlastic1
(
std
::
string
name
,
Real
young
,
Real
poisson
,
Real
tau_y0
,
Real
H
);
//! Copy constructor
MaterialHyperElastoPlastic1
(
const
MaterialHyperElastoPlastic1
&
other
)
=
delete
;
//! Move constructor
MaterialHyperElastoPlastic1
(
MaterialHyperElastoPlastic1
&&
other
)
=
delete
;
//! Destructor
virtual
~
MaterialHyperElastoPlastic1
()
=
default
;
//! Copy assignment operator
MaterialHyperElastoPlastic1
&
operator
=
(
const
MaterialHyperElastoPlastic1
&
other
)
=
delete
;
//! Move assignment operator
MaterialHyperElastoPlastic1
&
operator
=
(
MaterialHyperElastoPlastic1
&&
other
)
=
delete
;
/**
* evaluates Kirchhoff stress given the current placement gradient
* Fₜ, the previous Gradient Fₜ₋₁ and the cumulated plastic flow
* εₚ
*/
template
<
class
grad_t
>
inline
decltype
(
auto
)
evaluate_stress
(
grad_t
&&
F
,
StrainRef_t
F_prev
,
StrainRef_t
be_prev
,
Real
&
plast_flow
);
/**
* evaluates Kirchhoff stress and stiffness given the current placement gradient
* Fₜ, the previous Gradient Fₜ₋₁ and the cumulated plastic flow
* εₚ
*/
template
<
class
grad_t
>
inline
decltype
(
auto
)
evaluate_stress_tangent
(
grad_t
&&
F
,
StrainRef_t
F_prev
,
StrainRef_t
be_prev
,
Real
&
plast_flow
);
/**
* return the internals tuple
*/
typename
traits
::
InternalVariables
&
get_internals
()
{
return
this
->
internal_variables
;};
protected
:
/**
* worker function computing stresses and internal variables
*/
template
<
class
grad_t
>
inline
decltype
(
auto
)
stress_n_internals_worker
(
grad_t
&&
F
,
StrainRef_t
F_prev
,
StrainRef_t
be_prev
,
Real
&
plast_flow
);
using
LColl_t
=
LocalFieldCollection
<
DimS
,
DimM
>
;
//! storage for cumulated plastic flow εₚ
ScalarField
<
LColl_t
,
Real
>
&
plast_flow_field
;
//! storage for previous gradient Fᵗ
TensorField
<
LColl_t
,
Real
,
secondOrder
,
DimM
>
&
F_prev_field
;
//! storage for elastic left Cauchy-Green deformation tensor bₑᵗ
TensorField
<
LColl_t
,
Real
,
secondOrder
,
DimM
>
&
be_prev_field
;
// material properties
const
Real
young
;
//!< Young's modulus
const
Real
poisson
;
//!< Poisson's ratio
const
Real
lambda
;
//!< first Lamé constant
const
Real
mu
;
//!< second Lamé constant (shear modulus)
const
Real
K
;
//!< Bulk modulus
const
Real
tau_y0
;
//!< initial yield stress
const
Real
H
;
//!< hardening modulus
const
T4Mat
<
Real
,
DimM
>
C
;
//!< stiffness tensor
typename
traits
::
InternalVariables
internal_variables
;
private
:
};
//----------------------------------------------------------------------------//
template
<
Dim_t
DimS
,
Dim_t
DimM
>
template
<
class
grad_t
>
decltype
(
auto
)
MaterialHyperElastoPlastic1
<
DimS
,
DimM
>::
stress_n_internals_worker
(
grad_t
&&
F
,
StrainRef_t
F_prev
,
StrainRef_t
be_prev
,
Real
&
eps_p
)
{
// the notation in this function follows Geers 2003
// (https://doi.org/10.1016/j.cma.2003.07.014).
// computation of trial state
auto
&&
f
{
F
*
F_prev
.
inverse
()};
log_comp
::
Mat_t
<
DimM
>
be_star
{
f
*
be_prev
*
f
.
transpose
()};
auto
&&
ln_be_star
{
logm
(
be_star
)};
auto
&&
tau_star
{
.5
*
Hooke
::
evaluate_stress
(
this
->
lambda
,
this
->
mu
,
ln_be_star
)};
// deviatoric part of Kirchhoff stress
// TODO: There seems to be disagreement regarding whether the deviator in 2D also needs to have 3 times the trace subtracted or just 2 times. Have an eye on this!
auto
&&
tau_d_star
{
tau_star
-
tau_star
.
trace
()
/
3
*
tau_star
.
Identity
()};
auto
&&
tau_eq_star
{
std
::
sqrt
(
3
*
.5
*
(
tau_d_star
.
array
()
*
tau_d_star
.
transpose
().
array
()).
sum
())};
auto
&&
N_star
{
3
*
.5
*
tau_d_star
/
tau_eq_star
};
// this is eq (27), and the std::min enforces the Kuhn-Tucker relation (16)
auto
&&
phi_star
{
std
::
min
(
tau_eq_star
-
this
->
tau_y0
-
this
->
H
*
eps_p
,
0.
)};
// return mapping
auto
&&
Del_gamma
{
phi_star
/
(
this
->
H
+
3
*
this
->
mu
)};
auto
&&
tau
{
tau_star
-
2
*
Del_gamma
*
this
->
mu
*
N_star
};
//auto && tau_eq{tau_eq_star - 3*this->mu*Del_gamma};
// update the previous values to the new ones
F_prev
=
F
;
be_prev
=
expm
(
log_comp
::
Mat_t
<
DimM
>
(
ln_be_star
-
2
*
Del_gamma
*
N_star
));
eps_p
+=
Del_gamma
;
// transmit info whether this is a plastic step or not
auto
&&
is_plastic
{
phi_star
>=
0
};
return
std
::
make_tuple
(
std
::
move
(
tau
),
std
::
move
(
tau_eq_star
),
std
::
move
(
Del_gamma
),
std
::
move
(
N_star
),
std
::
move
(
is_plastic
));
}
//----------------------------------------------------------------------------//
template
<
Dim_t
DimS
,
Dim_t
DimM
>
template
<
class
grad_t
>
decltype
(
auto
)
MaterialHyperElastoPlastic1
<
DimS
,
DimM
>::
evaluate_stress
(
grad_t
&&
F
,
StrainRef_t
F_prev
,
StrainRef_t
be_prev
,
Real
&
eps_p
)
{
return
std
::
get
<
0
>
(
this
->
stress_n_internals_worker
(
std
::
forward
<
grad_t
>
(
F
),
F_prev
,
be_prev
,
eps_p
));
}
//----------------------------------------------------------------------------//
template
<
Dim_t
DimS
,
Dim_t
DimM
>
template
<
class
grad_t
>
decltype
(
auto
)
MaterialHyperElastoPlastic1
<
DimS
,
DimM
>::
evaluate_stress_tangent
(
grad_t
&&
F
,
StrainRef_t
F_prev
,
StrainRef_t
be_prev
,
Real
&
eps_p
)
{
//! after the stress computation, all internals are up to date
auto
&&
vals
{
this
->
stress_n_internals_worker
(
std
::
forward
<
grad_t
>
(
F
),
F_prev
,
be_prev
,
eps_p
)};
auto
&&
tau
{
std
::
get
<
0
>
(
vals
)};
auto
&&
tau_eq_star
{
std
::
get
<
1
>
(
vals
)};
auto
&&
Del_gamma
{
std
::
get
<
2
>
(
vals
)};
auto
&&
N_star
{
std
::
get
<
3
>
(
vals
)};
auto
&&
is_plastic
{
std
::
get
<
4
>
(
vals
)};
if
(
is_plastic
)
{
auto
&&
a0
=
Del_gamma
*
this
->
mu
/
tau_eq_star
;
auto
&&
a1
=
this
->
mu
/
(
this
->
H
+
3
*
this
->
mu
);
return
std
::
make_tuple
(
std
::
move
(
tau
),
T4Mat
<
Real
,
DimM
>
{
((
this
->
K
/
2.
-
this
->
mu
/
3
+
a0
*
this
->
mu
)
*
Matrices
::
Itrac
<
DimM
>
()
+
(
1
-
3
*
a0
)
*
this
->
mu
*
Matrices
::
Isymm
<
DimM
>
()
+
2
*
this
->
mu
*
(
a0
-
a1
)
*
Matrices
::
outer
(
N_star
,
N_star
))});
}
else
{
return
std
::
make_tuple
(
std
::
move
(
tau
),
T4Mat
<
Real
,
DimM
>
{
this
->
C
});
}
}
}
// muSpectre
#endif
/* MATERIAL_HYPER_ELASTO_PLASTIC1_H */
Event Timeline
Log In to Comment