Page MenuHomec4science

python_binding_tests.py
No OneTemporary

File Metadata

Created
Tue, Nov 5, 05:15

python_binding_tests.py

#!/usr/bin/env python3
"""
file python_binding_tests.py
@author Till Junge <till.junge@epfl.ch>
@date 09 Jan 2018
@brief Unit tests for python bindings
@section LICENCE
Copyright © 2018 Till Junge
µSpectre is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3, or (at
your option) any later version.
µSpectre is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with µSpectre; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
Additional permission under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or combining it
with proprietary FFT implementations or numerical libraries, containing parts
covered by the terms of those libraries' licenses, the licensors of this
Program grant you additional permission to convey the resulting work.
"""
import unittest
import numpy as np
from python_test_imports import µ
from python_fft_tests import FFT_Check
from python_projection_tests import *
from python_material_linear_elastic3_test import MaterialLinearElastic3_Check
from python_material_linear_elastic4_test import MaterialLinearElastic4_Check
from python_material_linear_elastic_generic1_test import MaterialLinearElasticGeneric1_Check
from python_material_linear_elastic_generic2_test import MaterialLinearElasticGeneric2_Check
from python_field_tests import FieldCollection_Check
from python_exact_reference_elastic_test import LinearElastic_Check
from python_field_tests import FieldCollection_Check
from python_muSpectre_gradient_integration_test import \
MuSpectre_gradient_integration_Check
from python_material_evaluator_test import MaterialEvaluator_Check
class CellCheck(unittest.TestCase):
def test_Construction(self):
"""
Simple check for cell constructors
"""
resolution = [5,7]
lengths = [5.2, 8.3]
formulation = µ.Formulation.small_strain
try:
sys = µ.Cell(resolution,
lengths,
formulation)
mat = µ.material.MaterialLinearElastic1_2d.make(sys, "material",
210e9, .33)
except Exception as err:
print(err)
raise err
class MaterialLinearElastic1_2dCheck(unittest.TestCase):
def setUp(self):
self.resolution = [5,7]
self.lengths = [5.2, 8.3]
self.formulation = µ.Formulation.small_strain
self.sys = µ.Cell(self.resolution,
self.lengths,
self.formulation)
self.mat = µ.material.MaterialLinearElastic1_2d.make(
self.sys, "material", 210e9, .33)
def test_add_material(self):
self.mat.add_pixel([2,1])
class SolverCheck(unittest.TestCase):
def setUp(self):
self.resolution = [3, 3]#[5,7]
self.lengths = [3., 3.]#[5.2, 8.3]
self.formulation = µ.Formulation.finite_strain
self.sys = µ.Cell(self.resolution,
self.lengths,
self.formulation)
self.hard = µ.material.MaterialLinearElastic1_2d.make(
self.sys, "hard", 210e9, .33)
self.soft = µ.material.MaterialLinearElastic1_2d.make(
self.sys, "soft", 70e9, .33)
def test_solve(self):
for i, pixel in enumerate(self.sys):
if i < 3:
self.hard.add_pixel(pixel)
else:
self.soft.add_pixel(pixel)
self.sys.initialise()
tol = 1e-6
Del0 = np.array([[0, .1],
[0, 0]])
maxiter = 100
verbose = 0
solver=µ.solvers.SolverCG(self.sys, tol, maxiter, verbose)
r = µ.solvers.de_geus(self.sys, Del0,
solver,tol, verbose)
#print(r)
class EigenStrainCheck(unittest.TestCase):
def setUp(self):
self.resolution = [3, 3]#[5,7]
self.lengths = [3., 3.]#[5.2, 8.3]
self.formulation = µ.Formulation.small_strain
self.cell1 = µ.Cell(self.resolution,
self.lengths,
self.formulation)
self.cell2 = µ.Cell(self.resolution,
self.lengths,
self.formulation)
self.mat1 = µ.material.MaterialLinearElastic1_2d.make(
self.cell1, "simple", 210e9, .33)
self.mat2 = µ.material.MaterialLinearElastic2_2d.make(
self.cell2, "eigen", 210e9, .33)
self.mat3 = µ.material.MaterialLinearElastic2_2d.make(
self.cell2, "eigen2", 120e9, .33)
def test_globalisation(self):
for pixel in self.cell2:
self.mat2.add_pixel(pixel, np.random.rand(2,2))
loc_eigenstrain = self.mat2.collection.get_real_field("Eigenstrain").array
glo_eigenstrain = self.cell2.get_globalised_internal_real_array("Eigenstrain")
error = np.linalg.norm(loc_eigenstrain-glo_eigenstrain)
self.assertEqual(error, 0)
def test_globalisation_constant(self):
for i, pixel in enumerate(self.cell2):
if i%2 == 0:
self.mat2.add_pixel(pixel, np.ones((2,2)))
else:
self.mat3.add_pixel(pixel, np.ones((2,2)))
glo_eigenstrain = self.cell2.get_globalised_internal_real_array("Eigenstrain")
error = np.linalg.norm(glo_eigenstrain-1)
self.assertEqual(error, 0)
def test_globalisation(self):
for pixel in self.cell2:
self.mat2.add_pixel(pixel, np.random.rand(2,2))
loc_eigenstrain = self.mat2.collection.get_real_field("Eigenstrain").array
glo_eigenstrain = self.cell2.get_globalised_internal_real_array("Eigenstrain")
error = np.linalg.norm(loc_eigenstrain-glo_eigenstrain)
self.assertEqual(error, 0)
def test_solve(self):
verbose_test = False
if verbose_test:
print("start test_solve")
grad = np.array([[1.1, .2],
[ .3, 1.5]])
gl_strain = -0.5*(grad.T.dot(grad) - np.eye(2))
gl_strain = -0.5*(grad.T + grad - 2*np.eye(2))
grad = -gl_strain
if verbose_test:
print("grad =\n{}\ngl_strain =\n{}".format(grad, gl_strain))
for i, pixel in enumerate(self.cell1):
self.mat1.add_pixel(pixel)
self.mat2.add_pixel(pixel, gl_strain)
self.cell1.initialise()
self.cell2.initialise()
tol = 1e-6
Del0_1 = grad
Del0_2 = np.zeros_like(grad)
maxiter = 2
verbose = 0
def solve(cell, grad):
solver=µ.solvers.SolverCG(cell, tol, maxiter, verbose)
r = µ.solvers.newton_cg(cell, grad,
solver, tol, tol, verbose)
return r
results = [solve(cell, del0) for (cell, del0)
in zip((self.cell1, self.cell2),
(Del0_1, Del0_2))]
P1 = results[0].stress
P2 = results[1].stress
error = np.linalg.norm(P1-P2)/np.linalg.norm(.5*(P1+P2))
if verbose_test:
print("cell 1, no eigenstrain")
print("P1:\n{}".format(P1[:,0]))
print("F1:\n{}".format(results[0].grad[:,0]))
print("cell 2, with eigenstrain")
print("P2:\n{}".format(P2[:,0]))
print("F2:\n{}".format(results[1].grad[:,0]))
print("end test_solve")
self.assertLess(error, tol)
if __name__ == '__main__':
unittest.main()

Event Timeline