Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92819689
python_exact_reference_elastic_test.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 23, 23:09
Size
17 KB
Mime Type
text/x-python
Expires
Mon, Nov 25, 23:09 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22417855
Attached To
rMUSPECTRE µSpectre
python_exact_reference_elastic_test.py
View Options
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
"""
@file python_exact_reference_test.py
@author Till Junge <till.junge@epfl.ch>
@date 18 Jun 2018
@brief Tests exactness of each iterate with respect to python reference
implementation from GooseFFT for elasticity
Copyright © 2018 Till Junge
µSpectre is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3, or (at
your option) any later version.
µSpectre is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
Additional permission under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or combining it
with proprietary FFT implementations or numerical libraries, containing parts
covered by the terms of those libraries' licenses, the licensors of this
Program grant you additional permission to convey the resulting work.
"""
import
unittest
import
numpy
as
np
from
numpy.linalg
import
norm
from
python_test_imports
import
µ
import
scipy.sparse.linalg
as
sp
import
itertools
np
.
set_printoptions
(
linewidth
=
180
)
comparator_nb_cols
=
9
# ----------------------------------- GRID ------------------------------------
ndim
=
3
# number of dimensions
N
=
3
# number of voxels (assumed equal for all directions)
Nx
=
Ny
=
Nz
=
N
def
deserialise_t4
(
t4
):
turnaround
=
np
.
arange
(
ndim
**
2
)
.
reshape
(
ndim
,
ndim
)
.
T
.
reshape
(
-
1
)
retval
=
np
.
zeros
([
ndim
*
ndim
,
ndim
*
ndim
])
for
i
,
j
in
itertools
.
product
(
range
(
ndim
**
2
),
repeat
=
2
):
retval
[
i
,
j
]
=
t4
[:
ndim
,
:
ndim
,
:
ndim
,
:
ndim
,
0
,
0
]
.
reshape
(
ndim
**
2
,
ndim
**
2
)[
turnaround
[
i
],
turnaround
[
j
]]
pass
return
retval
def
scalar_to_goose
(
s_msp
):
s_goose
=
np
.
zeros
((
Nx
,
Ny
,
Nz
))
for
i
in
range
(
Nx
):
for
j
in
range
(
Ny
):
for
k
in
range
(
Nz
):
s_goose
[
i
,
j
,
k
]
=
s_msp
[
Nz
*
Ny
*
i
+
Nz
*
j
+
k
]
pass
pass
return
s_goose
def
t2_to_goose
(
t2_msp
):
t2_goose
=
np
.
zeros
((
ndim
,
ndim
,
Nx
,
Ny
,
Nz
))
for
i
in
range
(
Nx
):
for
j
in
range
(
Ny
):
for
k
in
range
(
Nz
):
t2_goose
[:,:,
i
,
j
,
k
]
=
t2_msp
[:,
Nz
*
Ny
*
i
+
Nz
*
j
+
k
]
.
reshape
(
ndim
,
ndim
)
.
T
pass
pass
return
t2_goose
def
t2_vec_to_goose
(
t2_msp_vec
):
return
t2_to_goose
(
t2_msp_vec
.
reshape
(
ndim
*
ndim
,
Nx
*
Ny
*
Nz
))
.
reshape
(
-
1
)
def
scalar_vec_to_goose
(
s_msp_vec
):
return
scalar_to_goose
(
s_msp_vec
.
reshape
(
Nx
*
Ny
*
N
))
.
reshape
(
-
1
)
def
t4_to_goose
(
t4_msp
,
right_transposed
=
True
):
t4_goose
=
np
.
zeros
((
ndim
,
ndim
,
ndim
,
ndim
,
Nx
,
Ny
,
Nz
))
turnaround
=
np
.
arange
(
ndim
**
2
)
.
reshape
(
ndim
,
ndim
)
.
T
.
reshape
(
-
1
)
for
i
in
range
(
Nx
):
for
j
in
range
(
Ny
):
for
k
in
range
(
Nz
):
tmp
=
t4_msp
[:,
Nz
*
Ny
*
i
+
Nz
*
j
+
k
]
.
reshape
(
ndim
**
2
,
ndim
**
2
)
goose_view
=
t4_goose
[:,:,:,:,
i
,
j
,
k
]
.
reshape
(
ndim
**
2
,
ndim
**
2
)
for
a
,
b
in
itertools
.
product
(
range
(
ndim
**
2
),
repeat
=
2
):
a_id
=
a
if
right_transposed
else
turnaround
[
a
]
goose_view
[
a
,
b
]
=
tmp
[
a_id
,
turnaround
[
b
]]
pass
pass
return
t4_goose
def
t4_vec_to_goose
(
t4_msp_vec
):
return
t4_to_goose
(
t4_msp_vec
.
reshape
(
ndim
**
4
,
Nx
*
Ny
*
Nz
))
.
reshape
(
-
1
)
def
t2_from_goose
(
t2_goose
):
nb_pix
=
Nx
*
Ny
*
Nz
t2_msp
=
np
.
zeros
((
ndim
**
2
,
nb_pix
),
order
=
'F'
)
for
i
in
range
(
Nx
):
for
j
in
range
(
Ny
):
for
k
in
range
(
Nz
):
view
=
t2_msp
[:,
i
+
Nx
*
j
+
Nx
*
Ny
*
k
]
.
reshape
(
ndim
,
ndim
)
.
T
view
=
t2goose
[:,:,
i
,
j
,
k
]
.
T
pass
pass
return
t2_msp
# ---------------------- PROJECTION, TENSORS, OPERATIONS ----------------------
# tensor operations/products: np.einsum enables index notation, avoiding loops
# e.g. ddot42 performs $C_ij = A_ijkl B_lk$ for the entire grid
trans2
=
lambda
A2
:
np
.
einsum
(
'ijxyz ->jixyz '
,
A2
)
ddot42
=
lambda
A4
,
B2
:
np
.
einsum
(
'ijklxyz,lkxyz ->ijxyz '
,
A4
,
B2
)
ddot44
=
lambda
A4
,
B4
:
np
.
einsum
(
'ijklxyz,lkmnxyz->ijmnxyz'
,
A4
,
B4
)
dot22
=
lambda
A2
,
B2
:
np
.
einsum
(
'ijxyz ,jkxyz ->ikxyz '
,
A2
,
B2
)
dot24
=
lambda
A2
,
B4
:
np
.
einsum
(
'ijxyz ,jkmnxyz->ikmnxyz'
,
A2
,
B4
)
dot42
=
lambda
A4
,
B2
:
np
.
einsum
(
'ijklxyz,lmxyz ->ijkmxyz'
,
A4
,
B2
)
dyad22
=
lambda
A2
,
B2
:
np
.
einsum
(
'ijxyz ,klxyz ->ijklxyz'
,
A2
,
B2
)
# identity tensor [single tensor]
i
=
np
.
eye
(
ndim
)
# identity tensors [grid of tensors]
I
=
np
.
einsum
(
'ij,xyz'
,
i
,
np
.
ones
([
N
,
N
,
N
]))
I4
=
np
.
einsum
(
'ijkl,xyz->ijklxyz'
,
np
.
einsum
(
'il,jk'
,
i
,
i
),
np
.
ones
([
N
,
N
,
N
]))
I4rt
=
np
.
einsum
(
'ijkl,xyz->ijklxyz'
,
np
.
einsum
(
'ik,jl'
,
i
,
i
),
np
.
ones
([
N
,
N
,
N
]))
I4s
=
(
I4
+
I4rt
)
/
2.
II
=
dyad22
(
I
,
I
)
# projection operator [grid of tensors]
# NB can be vectorized (faster, less readable), see: "elasto-plasticity.py"
# - support function / look-up list / zero initialize
delta
=
lambda
i
,
j
:
np
.
float
(
i
==
j
)
# Dirac delta function
freq
=
np
.
arange
(
-
(
N
-
1
)
/
2.
,
+
(
N
+
1
)
/
2.
)
# coordinate axis -> freq. axis
Ghat4
=
np
.
zeros
([
ndim
,
ndim
,
ndim
,
ndim
,
N
,
N
,
N
])
# zero initialize
# - compute
for
i
,
j
,
l
,
m
in
itertools
.
product
(
range
(
ndim
),
repeat
=
4
):
for
x
,
y
,
z
in
itertools
.
product
(
range
(
N
),
repeat
=
3
):
q
=
np
.
array
([
freq
[
x
],
freq
[
y
],
freq
[
z
]])
# frequency vector
if
not
q
.
dot
(
q
)
==
0
:
# zero freq. -> mean
Ghat4
[
i
,
j
,
l
,
m
,
x
,
y
,
z
]
=
delta
(
i
,
m
)
*
q
[
j
]
*
q
[
l
]
/
(
q
.
dot
(
q
))
# (inverse) Fourier transform (for each tensor component in each direction)
fft
=
lambda
x
:
np
.
fft
.
fftshift
(
np
.
fft
.
fftn
(
np
.
fft
.
ifftshift
(
x
),[
N
,
N
,
N
]))
ifft
=
lambda
x
:
np
.
fft
.
fftshift
(
np
.
fft
.
ifftn
(
np
.
fft
.
ifftshift
(
x
),[
N
,
N
,
N
]))
# functions for the projection 'G', and the product 'G : K^LT : (delta F)^T'
G
=
lambda
A2
:
np
.
real
(
ifft
(
ddot42
(
Ghat4
,
fft
(
A2
))
)
)
.
reshape
(
-
1
)
K_dF
=
lambda
dFm
:
trans2
(
ddot42
(
K4
,
trans2
(
dFm
.
reshape
(
ndim
,
ndim
,
N
,
N
,
N
))))
G_K_dF
=
lambda
dFm
:
G
(
K_dF
(
dFm
))
# ------------------- PROBLEM DEFINITION / CONSTITIVE MODEL -------------------
# phase indicator: cubical inclusion of volume fraction (9**3)/(31**3)
phase
=
np
.
zeros
([
N
,
N
,
N
]);
phase
[:
2
,:
2
,:
2
]
=
1.
# material parameters + function to convert to grid of scalars
param
=
lambda
M0
,
M1
:
M0
*
np
.
ones
([
N
,
N
,
N
])
*
(
1.
-
phase
)
+
M1
*
np
.
ones
([
N
,
N
,
N
])
*
phase
K
=
param
(
0.833
,
8.33
)
# bulk modulus [grid of scalars]
mu
=
param
(
0.386
,
3.86
)
# shear modulus [grid of scalars]
# constitutive model: grid of "F" -> grid of "P", "K4" [grid of tensors]
def
constitutive
(
F
):
C4
=
K
*
II
+
2.
*
mu
*
(
I4s
-
1.
/
3.
*
II
)
S
=
ddot42
(
C4
,
.
5
*
(
dot22
(
trans2
(
F
),
F
)
-
I
))
P
=
dot22
(
F
,
S
)
K4
=
dot24
(
S
,
I4
)
+
ddot44
(
ddot44
(
I4rt
,
dot42
(
dot24
(
F
,
C4
),
trans2
(
F
))),
I4rt
)
return
P
,
K4
F
=
np
.
array
(
I
,
copy
=
True
)
P
,
K4
=
constitutive
(
F
)
class
Counter
(
object
):
def
__init__
(
self
):
self
.
count
=
self
.
reset
()
def
reset
(
self
):
self
.
count
=
0
return
self
.
count
def
get
(
self
):
return
self
.
count
def
__call__
(
self
,
dummy
):
self
.
count
+=
1
class
LinearElastic_Check
(
unittest
.
TestCase
):
def
t2_comparator
(
self
,
µ
T2
,
gT2
):
err_sum
=
0.
err_max
=
0.
for
counter
,
(
i
,
j
,
k
)
in
enumerate
(
self
.
rve
):
print
((
i
,
j
,
k
))
µ
_arr
=
µ
T2
[:,
counter
]
.
reshape
(
ndim
,
ndim
)
.
T
g_arr
=
gT2
[:,:,
i
,
j
,
k
]
self
.
assertEqual
(
Nz
*
Ny
*
i
+
Nz
*
j
+
k
,
counter
)
print
(
"µSpectre:"
)
print
(
µ
_arr
)
print
(
"Goose:"
)
print
(
g_arr
)
print
(
µ
_arr
-
g_arr
)
err
=
norm
(
µ
_arr
-
g_arr
)
print
(
"error norm for pixel {} = {}"
.
format
((
i
,
j
,
k
),
err
))
err_sum
+=
err
err_max
=
max
(
err_max
,
err
)
pass
print
(
"∑(err) = {}, max(err) = {}"
.
format
(
err_sum
,
err_max
))
return
err_sum
def
t4_comparator
(
self
,
µ
T4
,
gT4
,
right_transposed
=
True
):
""" right_transposed: in de Geus's notation, e.g.,
stiffness tensors have the last two dimensions inverted
"""
err_sum
=
0.
err_max
=
0.
errs
=
dict
()
turnaround
=
np
.
arange
(
ndim
**
2
)
.
reshape
(
ndim
,
ndim
)
.
T
.
reshape
(
-
1
)
def
zero_repr
(
arr
):
arrcopy
=
arr
.
copy
()
arrcopy
[
abs
(
arr
)
<
1e-13
]
=
0.
return
arrcopy
for
counter
,
(
i
,
j
,
k
)
in
enumerate
(
self
.
rve
):
µ
_arr_tmp
=
µ
T4
[:,
counter
]
.
reshape
(
ndim
**
2
,
ndim
**
2
)
.
T
µ
_arr
=
np
.
empty
((
ndim
**
2
,
ndim
**
2
))
for
a
,
b
in
itertools
.
product
(
range
(
ndim
**
2
),
repeat
=
2
):
a
=
a
if
right_transposed
else
turnaround
[
a
]
µ
_arr
[
a
,
b
]
=
µ
_arr_tmp
[
a
,
turnaround
[
b
]]
g_arr
=
gT4
[:,:,:,:,
i
,
j
,
k
]
.
reshape
(
ndim
**
2
,
ndim
**
2
)
self
.
assertEqual
(
Nz
*
Ny
*
i
+
Nz
*
j
+
k
,
counter
)
print
(
"µSpectre:"
)
print
(
zero_repr
(
µ
_arr
[:,
:
comparator_nb_cols
]))
print
(
"Goose:"
)
print
(
zero_repr
(
g_arr
[:,
:
comparator_nb_cols
]))
print
(
"Diff"
)
print
(
zero_repr
((
µ
_arr
-
g_arr
)[:,
:
comparator_nb_cols
]))
err
=
norm
(
µ
_arr
-
g_arr
)
/
norm
(
g_arr
)
print
(
"error norm for pixel {} = {}"
.
format
((
i
,
j
,
k
),
err
))
err_sum
+=
err
errs
[(
i
,
j
,
k
)]
=
err
err_max
=
max
(
err_max
,
err
)
print
(
"count {:>2}: err_norm = {:.5f}, err_sum = {:.5f}"
.
format
(
counter
,
err
,
err_sum
))
pass
print
(
"∑(err) = {}, max(err) = {}"
.
format
(
err_sum
,
err_max
))
return
err_sum
,
errs
def
setUp
(
self
):
#---------------------------- µSpectre init -----------------------------------
resolution
=
list
(
phase
.
shape
)
dim
=
len
(
resolution
)
self
.
dim
=
dim
center
=
np
.
array
([
r
//
2
for
r
in
resolution
])
incl
=
resolution
[
0
]
//
5
## Domain dimensions
lengths
=
[
float
(
r
)
for
r
in
resolution
]
## formulation (small_strain or finite_strain)
formulation
=
µ
.
Formulation
.
finite_strain
## build a computational domain
self
.
rve
=
µ
.
Cell
(
resolution
,
lengths
,
formulation
)
def
get_E_nu
(
bulk
,
shear
):
Young
=
9
*
bulk
*
shear
/
(
3
*
bulk
+
shear
)
Poisson
=
Young
/
(
2
*
shear
)
-
1
return
Young
,
Poisson
mat
=
µ
.
material
.
MaterialLinearElastic1_3d
E
,
nu
=
get_E_nu
(
.
833
,
.
386
)
hard
=
mat
.
make
(
self
.
rve
,
'hard'
,
10
*
E
,
nu
)
soft
=
mat
.
make
(
self
.
rve
,
'soft'
,
E
,
nu
)
for
pixel
in
self
.
rve
:
if
pixel
[
0
]
<
2
and
pixel
[
1
]
<
2
and
pixel
[
2
]
<
2
:
hard
.
add_pixel
(
pixel
)
else
:
soft
.
add_pixel
(
pixel
)
def
test_solve
(
self
):
before_cg_tol
=
1e-11
cg_tol
=
1e-11
after_cg_tol
=
1e-9
newton_tol
=
1e-4
# ----------------------------- NEWTON ITERATIONS ---------------------
# initialize deformation gradient, and stress/stiffness [tensor grid]
global
K4
,
P
,
F
F
=
np
.
array
(
I
,
copy
=
True
)
F2
=
np
.
array
(
I
,
copy
=
True
)
*
1.1
P2
,
K42
=
constitutive
(
F2
)
P
,
K4
=
constitutive
(
F
)
self
.
rve
.
set_uniform_strain
(
np
.
array
(
np
.
eye
(
ndim
)))
µ
F
=
self
.
rve
.
get_strain
()
self
.
assertLess
(
norm
(
t2_vec_to_goose
(
µ
F
)
-
F
.
reshape
(
-
1
))
/
norm
(
F
),
before_cg_tol
)
# set macroscopic loading
DbarF
=
np
.
zeros
([
ndim
,
ndim
,
N
,
N
,
N
]);
DbarF
[
0
,
1
]
+=
1.0
# initial residual: distribute "barF" over grid using "K4"
b
=
-
G_K_dF
(
DbarF
)
F
+=
DbarF
Fn
=
np
.
linalg
.
norm
(
F
)
iiter
=
0
# µSpectre inits
µ
barF
=
np
.
zeros_like
(
µ
F
)
µ
barF
[
ndim
,
:]
+=
1.
µ
F2
=
µ
F
.
copy
()
*
1.1
µ
P2
,
µ
K2
=
self
.
rve
.
evaluate_stress_tangent
(
µ
F2
)
err
=
norm
(
t2_vec_to_goose
(
µ
P2
)
-
P2
.
reshape
(
-
1
))
/
norm
(
P2
)
if
not
(
err
<
before_cg_tol
):
self
.
t2_comparator
(
µ
P2
,
µ
K2
)
self
.
assertLess
(
err
,
before_cg_tol
)
self
.
rve
.
set_uniform_strain
(
np
.
array
(
np
.
eye
(
ndim
)))
µ
P
,
µ
K
=
self
.
rve
.
evaluate_stress_tangent
(
µ
F
)
err
=
norm
(
t2_vec_to_goose
(
µ
P
)
-
P
.
reshape
(
-
1
))
if
not
(
err
<
before_cg_tol
):
print
(
µ
F
)
self
.
t2_comparator
(
µ
P
,
P
)
self
.
assertLess
(
err
,
before_cg_tol
)
err
=
norm
(
t4_vec_to_goose
(
µ
K
)
-
K4
.
reshape
(
-
1
))
/
norm
(
K4
)
if
not
(
err
<
before_cg_tol
):
print
(
"err = {}"
.
format
(
err
))
self
.
assertLess
(
err
,
before_cg_tol
)
µ
F
+=
µ
barF
µ
Fn
=
norm
(
µ
F
)
self
.
assertLess
(
norm
(
t2_vec_to_goose
(
µ
F
)
-
F
.
reshape
(
-
1
))
/
norm
(
F
),
before_cg_tol
)
µ
G_K_dF
=
lambda
x
:
self
.
rve
.
directional_stiffness
(
x
.
reshape
(
µ
F
.
shape
))
.
reshape
(
-
1
)
µ
G
=
lambda
x
:
self
.
rve
.
project
(
x
)
.
reshape
(
-
1
)
µ
b
=
-
µ
G_K_dF
(
µ
barF
)
err
=
(
norm
(
t2_vec_to_goose
(
µ
b
.
reshape
(
µ
F
.
shape
))
-
b
)
/
norm
(
b
))
if
not
(
err
<
before_cg_tol
):
print
(
"|µb| = {}"
.
format
(
norm
(
µ
b
)))
print
(
"|b| = {}"
.
format
(
norm
(
b
)))
print
(
"total error = {}"
.
format
(
err
))
self
.
t2_comparator
(
µ
b
.
reshape
(
µ
F
.
shape
),
b
.
reshape
(
F
.
shape
))
self
.
assertLess
(
err
,
before_cg_tol
)
# iterate as long as the iterative update does not vanish
while
True
:
# solve linear system using CG
g_counter
=
Counter
()
dFm
,
_
=
sp
.
cg
(
tol
=
cg_tol
,
A
=
sp
.
LinearOperator
(
shape
=
(
F
.
size
,
F
.
size
),
matvec
=
G_K_dF
,
dtype
=
'float'
),
b
=
b
,
callback
=
g_counter
)
µ
_counter
=
Counter
()
µ
dFm
,
_
=
sp
.
cg
(
tol
=
cg_tol
,
A
=
sp
.
LinearOperator
(
shape
=
(
F
.
size
,
F
.
size
),
matvec
=
µ
G_K_dF
,
dtype
=
'float'
),
b
=
µ
b
,
callback
=
µ
_counter
)
err
=
g_counter
.
get
()
-
µ
_counter
.
get
()
if
err
!=
0
:
print
(
"n_iter(g) = {}, n_iter(µ) = {}"
.
format
(
g_counter
.
get
(),
µ
_counter
.
get
()))
pass
# in the last iteration, the increment is essentially
# zero, so we don't care about relative error anymore
err
=
norm
(
t2_vec_to_goose
(
µ
dFm
)
-
dFm
)
/
norm
(
dFm
)
if
norm
(
dFm
)
/
Fn
>
newton_tol
and
norm
(
µ
dFm
)
/
Fn
>
newton_tol
:
if
not
(
err
<
after_cg_tol
):
self
.
t2_comparator
(
µ
dFm
.
reshape
(
µ
F
.
shape
),
dFm
.
reshape
(
F
.
shape
))
print
(
"µdFm.shape = {}"
.
format
(
µ
dFm
.
shape
))
print
(
"|µdFm| = {}"
.
format
(
norm
(
µ
dFm
)))
print
(
"|dFm| = {}"
.
format
(
norm
(
dFm
)))
print
(
"|µdFm - dFm| = {}"
.
format
(
norm
(
µ
dFm
-
dFm
)))
print
(
"AssertionWarning: {} is not less than {}"
.
format
(
err
,
after_cg_tol
))
self
.
assertLess
(
err
,
after_cg_tol
)
# update DOFs (array -> tens.grid)
F
+=
dFm
.
reshape
(
ndim
,
ndim
,
N
,
N
,
N
)
µ
F
+=
µ
dFm
.
reshape
(
µ
F
.
shape
)
# new residual stress and tangent
P
,
K4
=
constitutive
(
F
)
µ
P
,
µ
K
=
self
.
rve
.
evaluate_stress_tangent
(
µ
F
)
err
=
norm
(
t2_vec_to_goose
(
µ
P
)
-
P
.
reshape
(
-
1
))
/
norm
(
P
)
self
.
assertLess
(
err
,
before_cg_tol
)
err
=
norm
(
t4_vec_to_goose
(
µ
K
)
-
K4
.
reshape
(
-
1
))
/
norm
(
K4
)
if
not
(
err
<
before_cg_tol
):
print
(
"err = {}"
.
format
(
err
))
self
.
t4_comparator
(
µ
K
,
K4
)
self
.
assertLess
(
err
,
before_cg_tol
)
# convert res.stress to residual
b
=
-
G
(
P
)
µ
b
=
-
µ
G
(
µ
P
)
# in the last iteration, the rhs is essentianly zero,
# leading to large relative errors, which are ok. So we
# want either the relative error for the rhs to be small,
# or their absolute error to be small compared to unity
diff_norm
=
norm
(
t2_vec_to_goose
(
µ
b
)
-
b
.
reshape
(
-
1
))
err
=
diff_norm
/
norm
(
b
)
if
not
((
err
<
after_cg_tol
)
or
(
diff_norm
<
before_cg_tol
)):
self
.
t2_comparator
(
µ
b
.
reshape
(
µ
F
.
shape
),
b
.
reshape
(
F
.
shape
))
print
(
"|µb| = {}"
.
format
(
norm
(
µ
b
)))
print
(
"|b| = {}"
.
format
(
norm
(
b
)))
print
(
"err = {}"
.
format
(
err
))
print
(
"|µb-b| = {}"
.
format
(
norm
(
t2_vec_to_goose
(
µ
b
)
-
b
.
reshape
(
-
1
))))
print
(
"AssertionWarning: {} is not less than {}"
.
format
(
err
,
before_cg_tol
))
self
.
assertTrue
((
err
<
after_cg_tol
)
or
(
diff_norm
<
after_cg_tol
))
# print residual to the screen
print
(
'Goose:
%10.15e
'
%
(
np
.
linalg
.
norm
(
dFm
)
/
Fn
))
print
(
'µSpectre:
%10.15e
'
%
(
np
.
linalg
.
norm
(
µ
dFm
)
/
µ
Fn
))
if
np
.
linalg
.
norm
(
dFm
)
/
Fn
<
newton_tol
and
iiter
>
0
:
break
# check convergence
iiter
+=
1
if
__name__
==
'__main__'
:
unittest
.
main
()
Event Timeline
Log In to Comment