Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91133219
solvers.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 8, 06:11
Size
12 KB
Mime Type
text/x-c
Expires
Sun, Nov 10, 06:11 (2 d)
Engine
blob
Format
Raw Data
Handle
22202115
Attached To
rMUSPECTRE µSpectre
solvers.cc
View Options
/**
* @file solvers.cc
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 20 Dec 2017
*
* @brief implementation of solver functions
*
* Copyright © 2017 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "solver/solvers.hh"
#include "solver/solver_cg.hh"
#include "common/iterators.hh"
#include <Eigen/IterativeLinearSolvers>
#include <iomanip>
#include <cmath>
namespace
muSpectre
{
template
<
Dim_t
DimS
,
Dim_t
DimM
>
std
::
vector
<
OptimizeResult
>
de_geus
(
SystemBase
<
DimS
,
DimM
>
&
sys
,
const
GradIncrements
<
DimM
>
&
delFs
,
SolverBase
<
DimS
,
DimM
>
&
solver
,
Real
newton_tol
,
Dim_t
verbose
)
{
using
Field_t
=
typename
MaterialBase
<
DimS
,
DimM
>::
StrainField_t
;
auto
solver_fields
{
std
::
make_unique
<
GlobalFieldCollection
<
DimS
,
DimM
>>
()};
solver_fields
->
initialise
(
sys
.
get_resolutions
());
// Corresponds to symbol δF or δε
auto
&
incrF
{
make_field
<
Field_t
>
(
"δF"
,
*
solver_fields
)};
// Corresponds to symbol ΔF or Δε
auto
&
DeltaF
{
make_field
<
Field_t
>
(
"ΔF"
,
*
solver_fields
)};
// field to store the rhs for cg calculations
auto
&
rhs
{
make_field
<
Field_t
>
(
"rhs"
,
*
solver_fields
)};
solver
.
initialise
();
if
(
solver
.
get_maxiter
()
==
0
)
{
solver
.
set_maxiter
(
sys
.
size
()
*
DimM
*
DimM
*
10
);
}
size_t
count_width
{};
const
auto
form
{
sys
.
get_formulation
()};
std
::
string
strain_symb
{};
if
(
verbose
>
0
)
{
//setup of algorithm 5.2 in Nocedal, Numerical Optimization (p. 111)
std
::
cout
<<
"de Geus-"
<<
solver
.
name
()
<<
" for "
;
switch
(
form
)
{
case
Formulation
::
small_strain:
{
strain_symb
=
"ε"
;
std
::
cout
<<
"small"
;
break
;
}
case
Formulation
::
finite_strain:
{
strain_symb
=
"F"
;
std
::
cout
<<
"finite"
;
break
;
}
default
:
throw
SolverError
(
"unknown formulation"
);
break
;
}
std
::
cout
<<
" strain with"
<<
std
::
endl
<<
"newton_tol = "
<<
newton_tol
<<
", cg_tol = "
<<
solver
.
get_tol
()
<<
" maxiter = "
<<
solver
.
get_maxiter
()
<<
" and Δ"
<<
strain_symb
<<
" ="
<<
std
::
endl
;
for
(
auto
&&
tup:
akantu
::
enumerate
(
delFs
))
{
auto
&&
counter
{
std
::
get
<
0
>
(
tup
)};
auto
&&
grad
{
std
::
get
<
1
>
(
tup
)};
std
::
cout
<<
"Step "
<<
counter
+
1
<<
":"
<<
std
::
endl
<<
grad
<<
std
::
endl
;
}
count_width
=
size_t
(
std
::
log10
(
solver
.
get_maxiter
()))
+
1
;
}
// initialise F = I or ε = 0
auto
&
F
{
sys
.
get_strain
()};
switch
(
form
)
{
case
Formulation
::
finite_strain:
{
F
.
get_map
()
=
Matrices
::
I2
<
DimM
>
();
break
;
}
case
Formulation
::
small_strain:
{
F
.
get_map
()
=
Matrices
::
I2
<
DimM
>
().
Zero
();
for
(
const
auto
&
delF:
delFs
)
{
if
(
!
check_symmetry
(
delF
))
{
throw
SolverError
(
"all Δε must be symmetric!"
);
}
}
break
;
}
default
:
throw
SolverError
(
"Unknown formulation"
);
break
;
}
// initialise return value
std
::
vector
<
OptimizeResult
>
ret_val
{};
// initialise materials
constexpr
bool
need_tangent
{
true
};
sys
.
initialise_materials
(
need_tangent
);
Grad_t
<
DimM
>
previous_grad
{
Grad_t
<
DimM
>::
Zero
()};
for
(
const
auto
&
delF:
delFs
)
{
//incremental loop
Real
incrNorm
{
2
*
newton_tol
},
gradNorm
{
1
};
auto
convergence_test
=
[
&
incrNorm
,
&
gradNorm
,
&
newton_tol
]
()
{
return
incrNorm
/
gradNorm
<=
newton_tol
;
};
Uint
newt_iter
{
0
};
for
(;
(
newt_iter
<
solver
.
get_maxiter
())
&&
(
!
convergence_test
()
||
(
newt_iter
==
1
));
++
newt_iter
)
{
// obtain material response
auto
res_tup
{
sys
.
evaluate_stress_tangent
(
F
)};
auto
&
P
{
std
::
get
<
0
>
(
res_tup
)};
auto
&
K
{
std
::
get
<
1
>
(
res_tup
)};
auto
tangent_effect
=
[
&
sys
,
&
K
]
(
const
Field_t
&
dF
,
Field_t
&
dP
)
{
sys
.
directional_stiffness
(
K
,
dF
,
dP
);
};
if
(
newt_iter
==
0
)
{
DeltaF
.
get_map
()
=
-
(
delF
-
previous_grad
);
// neg sign because rhs
tangent_effect
(
DeltaF
,
rhs
);
incrF
.
eigenvec
()
=
solver
.
solve
(
rhs
.
eigenvec
(),
incrF
.
eigenvec
());
F
.
eigen
()
-=
DeltaF
.
eigen
();
}
else
{
rhs
.
eigen
()
=
-
P
.
eigen
();
sys
.
project
(
rhs
);
incrF
.
eigen
()
=
0
;
incrF
.
eigenvec
()
=
solver
.
solve
(
rhs
.
eigenvec
(),
incrF
.
eigenvec
());
}
F
.
eigen
()
+=
incrF
.
eigen
();
incrNorm
=
incrF
.
eigen
().
matrix
().
norm
();
gradNorm
=
F
.
eigen
().
matrix
().
norm
();
if
(
verbose
>
0
)
{
std
::
cout
<<
"at Newton step "
<<
std
::
setw
(
count_width
)
<<
newt_iter
<<
", |δ"
<<
strain_symb
<<
"|/|Δ"
<<
strain_symb
<<
"| = "
<<
std
::
setw
(
17
)
<<
incrNorm
/
gradNorm
<<
", tol = "
<<
newton_tol
<<
std
::
endl
;
if
(
verbose
-
1
>
1
)
{
std
::
cout
<<
"<"
<<
strain_symb
<<
"> ="
<<
std
::
endl
<<
F
.
get_map
().
mean
()
<<
std
::
endl
;
}
}
}
// update previous gradient
previous_grad
=
delF
;
ret_val
.
push_back
(
OptimizeResult
{
F
.
eigen
(),
sys
.
get_stress
().
eigen
(),
convergence_test
(),
Int
(
convergence_test
()),
"message not yet implemented"
,
newt_iter
,
solver
.
get_counter
()});
//!store history variables here
}
return
ret_val
;
}
//! instantiation for two-dimensional cells
template
std
::
vector
<
OptimizeResult
>
de_geus
(
SystemBase
<
twoD
,
twoD
>
&
sys
,
const
GradIncrements
<
twoD
>&
delF0
,
SolverBase
<
twoD
,
twoD
>
&
solver
,
Real
newton_tol
,
Dim_t
verbose
);
// template typename SystemBase<twoD, threeD>::StrainField_t &
// de_geus (SystemBase<twoD, threeD> & sys, const GradIncrements<threeD>& delF0,
// const Real cg_tol, const Real newton_tol, Uint maxiter,
// Dim_t verbose);
//! instantiation for three-dimensional cells
template
std
::
vector
<
OptimizeResult
>
de_geus
(
SystemBase
<
threeD
,
threeD
>
&
sys
,
const
GradIncrements
<
threeD
>&
delF0
,
SolverBase
<
threeD
,
threeD
>
&
solver
,
Real
newton_tol
,
Dim_t
verbose
);
/* ---------------------------------------------------------------------- */
template
<
Dim_t
DimS
,
Dim_t
DimM
>
std
::
vector
<
OptimizeResult
>
newton_cg
(
SystemBase
<
DimS
,
DimM
>
&
sys
,
const
GradIncrements
<
DimM
>
&
delFs
,
SolverBase
<
DimS
,
DimM
>
&
solver
,
Real
newton_tol
,
Dim_t
verbose
)
{
using
Field_t
=
typename
MaterialBase
<
DimS
,
DimM
>::
StrainField_t
;
auto
solver_fields
{
std
::
make_unique
<
GlobalFieldCollection
<
DimS
,
DimM
>>
()};
solver_fields
->
initialise
(
sys
.
get_resolutions
());
// Corresponds to symbol δF or δε
auto
&
incrF
{
make_field
<
Field_t
>
(
"δF"
,
*
solver_fields
)};
// field to store the rhs for cg calculations
auto
&
rhs
{
make_field
<
Field_t
>
(
"rhs"
,
*
solver_fields
)};
solver
.
initialise
();
if
(
solver
.
get_maxiter
()
==
0
)
{
solver
.
set_maxiter
(
sys
.
size
()
*
DimM
*
DimM
*
10
);
}
size_t
count_width
{};
const
auto
form
{
sys
.
get_formulation
()};
std
::
string
strain_symb
{};
if
(
verbose
>
0
)
{
//setup of algorithm 5.2 in Nocedal, Numerical Optimization (p. 111)
std
::
cout
<<
"Newton-"
<<
solver
.
name
()
<<
" for "
;
switch
(
form
)
{
case
Formulation
::
small_strain:
{
strain_symb
=
"ε"
;
std
::
cout
<<
"small"
;
break
;
}
case
Formulation
::
finite_strain:
{
strain_symb
=
"Fy"
;
std
::
cout
<<
"finite"
;
break
;
}
default
:
throw
SolverError
(
"unknown formulation"
);
break
;
}
std
::
cout
<<
" strain with"
<<
std
::
endl
<<
"newton_tol = "
<<
newton_tol
<<
", cg_tol = "
<<
solver
.
get_tol
()
<<
" maxiter = "
<<
solver
.
get_maxiter
()
<<
" and Δ"
<<
strain_symb
<<
" ="
<<
std
::
endl
;
for
(
auto
&&
tup:
akantu
::
enumerate
(
delFs
))
{
auto
&&
counter
{
std
::
get
<
0
>
(
tup
)};
auto
&&
grad
{
std
::
get
<
1
>
(
tup
)};
std
::
cout
<<
"Step "
<<
counter
+
1
<<
":"
<<
std
::
endl
<<
grad
<<
std
::
endl
;
}
count_width
=
size_t
(
std
::
log10
(
solver
.
get_maxiter
()))
+
1
;
}
// initialise F = I or ε = 0
auto
&
F
{
sys
.
get_strain
()};
switch
(
sys
.
get_formulation
())
{
case
Formulation
::
finite_strain:
{
F
.
get_map
()
=
Matrices
::
I2
<
DimM
>
();
break
;
}
case
Formulation
::
small_strain:
{
F
.
get_map
()
=
Matrices
::
I2
<
DimM
>
().
Zero
();
for
(
const
auto
&
delF:
delFs
)
{
if
(
!
check_symmetry
(
delF
))
{
throw
SolverError
(
"all Δε must be symmetric!"
);
}
}
break
;
}
default
:
throw
SolverError
(
"Unknown formulation"
);
break
;
}
// initialise return value
std
::
vector
<
OptimizeResult
>
ret_val
{};
// initialise materials
constexpr
bool
need_tangent
{
true
};
sys
.
initialise_materials
(
need_tangent
);
Grad_t
<
DimM
>
previous_grad
{
Grad_t
<
DimM
>::
Zero
()};
for
(
const
auto
&
delF:
delFs
)
{
//incremental loop
// apply macroscopic strain increment
for
(
auto
&&
grad:
F
.
get_map
())
{
grad
+=
delF
-
previous_grad
;
}
Real
incrNorm
{
2
*
newton_tol
},
gradNorm
{
1
};
auto
convergence_test
=
[
&
incrNorm
,
&
gradNorm
,
&
newton_tol
]
()
{
return
incrNorm
/
gradNorm
<=
newton_tol
;
};
Uint
newt_iter
{
0
};
for
(;
newt_iter
<
solver
.
get_maxiter
()
&&
!
convergence_test
();
++
newt_iter
)
{
// obtain material response
auto
res_tup
{
sys
.
evaluate_stress_tangent
(
F
)};
auto
&
P
{
std
::
get
<
0
>
(
res_tup
)};
rhs
.
eigen
()
=
-
P
.
eigen
();
sys
.
project
(
rhs
);
incrF
.
eigen
()
=
0
;
incrF
.
eigenvec
()
=
solver
.
solve
(
rhs
.
eigenvec
(),
incrF
.
eigenvec
());
F
.
eigen
()
+=
incrF
.
eigen
();
incrNorm
=
incrF
.
eigen
().
matrix
().
norm
();
gradNorm
=
F
.
eigen
().
matrix
().
norm
();
if
(
verbose
>
0
)
{
std
::
cout
<<
"at Newton step "
<<
std
::
setw
(
count_width
)
<<
newt_iter
<<
", |δ"
<<
strain_symb
<<
"|/|Δ"
<<
strain_symb
<<
"| = "
<<
std
::
setw
(
17
)
<<
incrNorm
/
gradNorm
<<
", tol = "
<<
newton_tol
<<
std
::
endl
;
if
(
verbose
-
1
>
1
)
{
std
::
cout
<<
"<"
<<
strain_symb
<<
"> ="
<<
std
::
endl
<<
F
.
get_map
().
mean
()
<<
std
::
endl
;
}
}
}
// update previous gradient
previous_grad
=
delF
;
ret_val
.
push_back
(
OptimizeResult
{
F
.
eigen
(),
sys
.
get_stress
().
eigen
(),
convergence_test
(),
Int
(
convergence_test
()),
"message not yet implemented"
,
newt_iter
,
solver
.
get_counter
()});
//store history variables here
}
return
ret_val
;
}
//! instantiation for two-dimensional cells
template
std
::
vector
<
OptimizeResult
>
newton_cg
(
SystemBase
<
twoD
,
twoD
>
&
sys
,
const
GradIncrements
<
twoD
>&
delF0
,
SolverBase
<
twoD
,
twoD
>
&
solver
,
Real
newton_tol
,
Dim_t
verbose
);
// template typename SystemBase<twoD, threeD>::StrainField_t &
// newton_cg (SystemBase<twoD, threeD> & sys, const GradIncrements<threeD>& delF0,
// const Real cg_tol, const Real newton_tol, Uint maxiter,
// Dim_t verbose);
//! instantiation for three-dimensional cells
template
std
::
vector
<
OptimizeResult
>
newton_cg
(
SystemBase
<
threeD
,
threeD
>
&
sys
,
const
GradIncrements
<
threeD
>&
delF0
,
SolverBase
<
threeD
,
threeD
>
&
solver
,
Real
newton_tol
,
Dim_t
verbose
);
/* ---------------------------------------------------------------------- */
bool
check_symmetry
(
const
Eigen
::
Ref
<
const
Eigen
::
ArrayXXd
>&
eps
,
Real
rel_tol
){
return
rel_tol
>=
(
eps
-
eps
.
transpose
()).
matrix
().
norm
()
/
eps
.
matrix
().
norm
();
}
}
// muSpectre
Event Timeline
Log In to Comment