Page MenuHomec4science

hyper-elasticity.py
No OneTemporary

File Metadata

Created
Wed, Nov 6, 21:46

hyper-elasticity.py

#!/usr/bin/env python3
"""
file hyper-elasticity.py
@author Till Junge <till.junge@epfl.ch>
@date 16 Jan 2018
@brief Recreation of GooseFFT's hyper-elasticity.py calculation
@section LICENSE
Copyright © 2018 Till Junge
µSpectre is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3, or (at
your option) any later version.
µSpectre is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
"""
import sys
import os
import numpy as np
import argparse
sys.path.append(os.path.join(os.getcwd(), "language_bindings/python"))
import muSpectre as µ
def compute():
N = [11, 11, 11]
lens = [1., 1., 1.]
incl_size = 3
formulation = µ.Formulation.finite_strain
cell = µ.SystemFactory(N,
lens,
formulation)
hard = µ.material.MaterialHooke3d.make(cell, "hard",
210.e9, .33)
soft = µ.material.MaterialHooke3d.make(cell, "soft",
70.e9, .33)
for pixel in cell:
# if ((pixel[0] >= N[0]-incl_size) and
# (pixel[1] < incl_size) and
# (pixel[2] >= N[2]-incl_size)):
if (pixel[0] < 1):
hard.add_pixel(pixel)
else:
soft.add_pixel(pixel)
print("{} pixels in the inclusion".format(hard.size()))
cell.initialise();
cg_tol, newton_tol = 1e-8, 1e-5
maxiter = 40
verbose = 3
dF_bar = np.array([[0, .02, 0], [0, 0, 0], [0, 0, 0]])
if formulation == µ.Formulation.small_strain:
dF_bar = .5*(dF_bar + dF_bar.T)
test_grad = np.zeros((9, cell.size()))
test_grad[:,:] = dF_bar.reshape(-1,1)
print(cell.directional_stiffness(test_grad)[:,:3])
solver = µ.solvers.SolverCG(cell, cg_tol, maxiter, verbose=False);
optimize_res = µ.solvers.de_geus(
cell, dF_bar, solver, newton_tol, verbose)
print("nb_cg: {}\n{}".format(optimize_res.nb_fev, optimize_res.grad.T[:2,:]))
def main():
compute()
if __name__ == "__main__":
main()

Event Timeline