Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90841946
solvers.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 06:32
Size
4 KB
Mime Type
text/x-c
Expires
Thu, Nov 7, 06:32 (2 d)
Engine
blob
Format
Raw Data
Handle
22142916
Attached To
rMUSPECTRE µSpectre
solvers.hh
View Options
/**
* @file solvers.hh
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 20 Dec 2017
*
* @brief Free functions for solving
*
* Copyright © 2017 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef SOLVERS_H
#define SOLVERS_H
#include "solver/solver_base.hh"
#include <Eigen/Dense>
#include <vector>
#include <string>
namespace muSpectre {
/**
* emulates scipy.optimize.OptimizeResult
*/
struct OptimizeResult
{
//! Strain ε or Gradient F at solution
Eigen::ArrayXXd grad;
//! Cauchy stress σ or first Piola-Kirchhoff stress P at solution
Eigen::ArrayXXd stress;
//! whether or not the solver exited successfully
bool success;
//! Termination status of the optimizer. Its value depends on the
//! underlying solver. Refer to message for details.
Int status;
//! Description of the cause of the termination.
std::string message;
//! number of iterations
Uint nb_it;
//! number of system evaluations
Uint nb_fev;
};
/**
* Field type that solvers expect gradients to be expressed in
*/
template <Dim_t Dim>
using Grad_t = Matrices::Tens2_t<Dim>;
/**
* multiple increments can be submitted at once (useful for
* path-dependent materials)
*/
template <Dim_t Dim>
using GradIncrements = std::vector<Grad_t<Dim>,
Eigen::aligned_allocator<Grad_t<Dim>>>;
/* ---------------------------------------------------------------------- */
/**
* Uses the Newton-conjugate Gradient method to find the static
* equilibrium of a cell given a series of mean applied strains
*/
template <Dim_t DimS, Dim_t DimM=DimS>
std::vector<OptimizeResult>
newton_cg (SystemBase<DimS, DimM> & sys,
const GradIncrements<DimM> & delF0,
SolverBase<DimS, DimM> & solver, Real newton_tol,
Real equil_tol,
Dim_t verbose = 0);
/* ---------------------------------------------------------------------- */
/**
* Uses the Newton-conjugate Gradient method to find the static
* equilibrium of a cell given a mean applied strain
*/
template <Dim_t DimS, Dim_t DimM=DimS>
inline OptimizeResult
newton_cg (SystemBase<DimS, DimM> & sys, const Grad_t<DimM> & delF0,
SolverBase<DimS, DimM> & solver, Real newton_tol,
Real equil_tol,
Dim_t verbose = 0){
return newton_cg(sys, GradIncrements<DimM>{delF0},
solver, newton_tol, equil_tol, verbose)[0];
}
/* ---------------------------------------------------------------------- */
/**
* Uses the method proposed by de Geus method to find the static
* equilibrium of a cell given a series of mean applied strains
*/
template <Dim_t DimS, Dim_t DimM=DimS>
std::vector<OptimizeResult>
de_geus (SystemBase<DimS, DimM> & sys,
const GradIncrements<DimM> & delF0,
SolverBase<DimS, DimM> & solver, Real newton_tol,
Real equil_tol,
Dim_t verbose = 0);
/* ---------------------------------------------------------------------- */
/**
* Uses the method proposed by de Geus method to find the static
* equilibrium of a cell given a mean applied strain
*/
template <Dim_t DimS, Dim_t DimM=DimS>
OptimizeResult
de_geus (SystemBase<DimS, DimM> & sys, const Grad_t<DimM> & delF0,
SolverBase<DimS, DimM> & solver, Real newton_tol,
Real equil_tol,
Dim_t verbose = 0){
return de_geus(sys, GradIncrements<DimM>{delF0},
solver, newton_tol, equil_tol, verbose)[0];
}
/* ---------------------------------------------------------------------- */
/**
* check whether a strain is symmetric, for the purposes of small
* strain problems
*/
bool check_symmetry(const Eigen::Ref<const Eigen::ArrayXXd>& eps,
Real rel_tol = 1e-8);
} // muSpectre
#endif /* SOLVERS_H */
Event Timeline
Log In to Comment