Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90705884
mpi_test_solver_newton_cg.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 01:00
Size
7 KB
Mime Type
text/x-c
Expires
Wed, Nov 6, 01:00 (2 d)
Engine
blob
Format
Raw Data
Handle
22121011
Attached To
rMUSPECTRE µSpectre
mpi_test_solver_newton_cg.cc
View Options
/**
* @file test_solver_newton_cg.cc
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 20 Dec 2017
*
* @brief Tests for the standard Newton-Raphson + Conjugate Gradient solver
*
* Copyright © 2017 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "tests.hh"
#include "mpi_context.hh"
#include "solver/solvers.hh"
#include "solver/solver_cg.hh"
#include "solver/solver_cg_eigen.hh"
#include "fft/fftwmpi_engine.hh"
#include "fft/projection_finite_strain_fast.hh"
#include "materials/material_linear_elastic1.hh"
#include "common/iterators.hh"
#include "common/ccoord_operations.hh"
#include "cell/cell_factory.hh"
namespace
muSpectre
{
BOOST_AUTO_TEST_SUITE
(
newton_cg_tests
);
BOOST_AUTO_TEST_CASE
(
manual_construction_test
)
{
// constexpr Dim_t dim{twoD};
constexpr
Dim_t
dim
{
threeD
};
// constexpr Ccoord_t<dim> resolutions{3, 3};
// constexpr Rcoord_t<dim> lengths{2.3, 2.7};
constexpr
Ccoord_t
<
dim
>
resolutions
{
5
,
5
,
5
};
constexpr
Rcoord_t
<
dim
>
lengths
{
5
,
5
,
5
};
auto
fft_ptr
{
std
::
make_unique
<
FFTWMPIEngine
<
dim
,
dim
>>
(
resolutions
,
lengths
,
MPIContext
::
get_context
().
comm
)};
auto
proj_ptr
{
std
::
make_unique
<
ProjectionFiniteStrainFast
<
dim
,
dim
>>
(
std
::
move
(
fft_ptr
))};
CellBase
<
dim
,
dim
>
sys
(
std
::
move
(
proj_ptr
));
using
Mat_t
=
MaterialLinearElastic1
<
dim
,
dim
>
;
//const Real Young{210e9}, Poisson{.33};
const
Real
Young
{
1.0030648180242636
},
Poisson
{
0.29930675909878679
};
// const Real lambda{Young*Poisson/((1+Poisson)*(1-2*Poisson))};
// const Real mu{Young/(2*(1+Poisson))};
auto
&
Material_hard
=
Mat_t
::
make
(
sys
,
"hard"
,
10
*
Young
,
Poisson
);
auto
&
Material_soft
=
Mat_t
::
make
(
sys
,
"soft"
,
Young
,
Poisson
);
auto
&
loc
=
sys
.
get_locations
();
for
(
auto
&&
tup:
akantu
::
enumerate
(
sys
))
{
auto
&&
pixel
=
std
::
get
<
1
>
(
tup
);
if
(
loc
==
Ccoord_t
<
threeD
>
{
0
,
0
}
&&
std
::
get
<
0
>
(
tup
)
==
0
)
{
Material_hard
.
add_pixel
(
pixel
);
}
else
{
Material_soft
.
add_pixel
(
pixel
);
}
}
sys
.
initialise
();
Grad_t
<
dim
>
delF0
;
delF0
<<
0
,
1.
,
0
,
0
,
0
,
0
,
0
,
0
,
0
;
constexpr
Real
cg_tol
{
1e-8
},
newton_tol
{
1e-5
};
constexpr
Uint
maxiter
{
CcoordOps
::
get_size
(
resolutions
)
*
ipow
(
dim
,
secondOrder
)
*
10
};
constexpr
bool
verbose
{
true
};
GradIncrements
<
dim
>
grads
;
grads
.
push_back
(
delF0
);
SolverCG
<
dim
>
cg
{
sys
,
cg_tol
,
maxiter
,
bool
(
verbose
)};
Eigen
::
ArrayXXd
res1
{
de_geus
(
sys
,
grads
,
cg
,
newton_tol
,
verbose
)[
0
].
grad
};
SolverCG
<
dim
>
cg2
{
sys
,
cg_tol
,
maxiter
,
bool
(
verbose
)};
Eigen
::
ArrayXXd
res2
{
newton_cg
(
sys
,
grads
,
cg2
,
newton_tol
,
verbose
)[
0
].
grad
};
BOOST_CHECK_LE
(
abs
(
res1
-
res2
).
mean
(),
cg_tol
);
}
#if 0
BOOST_AUTO_TEST_CASE(small_strain_patch_test) {
constexpr Dim_t dim{twoD};
using Ccoord = Ccoord_t<dim>;
using Rcoord = Rcoord_t<dim>;
constexpr Ccoord resolutions{CcoordOps::get_cube<dim>(3)};
constexpr Rcoord lengths{CcoordOps::get_cube<dim>(1.)};
constexpr Formulation form{Formulation::small_strain};
// number of layers in the hard material
constexpr Uint nb_lays{1};
constexpr Real contrast{2};
static_assert(nb_lays < resolutions[0],
"the number or layers in the hard material must be smaller "
"than the total number of layers in dimension 0");
auto sys{make_cell(resolutions, lengths, form)};
using Mat_t = MaterialLinearElastic1<dim, dim>;
constexpr Real Young{2.}, Poisson{.33};
auto material_hard{std::make_unique<Mat_t>("hard", contrast*Young, Poisson)};
auto material_soft{std::make_unique<Mat_t>("soft", Young, Poisson)};
for (const auto & pixel: sys) {
if (pixel[0] < Dim_t(nb_lays)) {
material_hard->add_pixel(pixel);
} else {
material_soft->add_pixel(pixel);
}
}
sys.add_material(std::move(material_hard));
sys.add_material(std::move(material_soft));
sys.initialise();
Grad_t<dim> delEps0{Grad_t<dim>::Zero()};
constexpr Real eps0 = 1.;
//delEps0(0, 1) = delEps0(1, 0) = eps0;
delEps0(0, 0) = eps0;
constexpr Real cg_tol{1e-8}, newton_tol{1e-5}, equil_tol{1e-10};
constexpr Uint maxiter{dim*10};
constexpr Dim_t verbose{0};
SolverCGEigen<dim> cg{sys, cg_tol, maxiter, bool(verbose)};
auto result = de_geus(sys, delEps0, cg, newton_tol,
equil_tol, verbose);
if (verbose) {
std::cout << "result:" << std::endl << result.grad << std::endl;
std::cout << "mean strain = " << std::endl
<< sys.get_strain().get_map().mean() << std::endl;
}
/**
* verification of resultant strains: subscript ₕ for hard and ₛ
* for soft, Nₕ is nb_lays and Nₜₒₜ is resolutions, k is contrast
*
* Δl = εl = Δlₕ + Δlₛ = εₕlₕ+εₛlₛ
* => ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ
*
* σ is constant across all layers
* σₕ = σₛ
* => Eₕ εₕ = Eₛ εₛ
* => εₕ = 1/k εₛ
* => ε / (1/k Nₕ/Nₜₒₜ + (Nₜₒₜ-Nₕ)/Nₜₒₜ) = εₛ
*/
constexpr Real factor{1/contrast * Real(nb_lays)/resolutions[0]
+ 1.-nb_lays/Real(resolutions[0])};
constexpr Real eps_soft{eps0/factor};
constexpr Real eps_hard{eps_soft/contrast};
if (verbose) {
std::cout << "εₕ = " << eps_hard << ", εₛ = " << eps_soft << std::endl;
std::cout << "ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ" << std::endl;
}
Grad_t<dim> Eps_hard; Eps_hard << eps_hard, 0, 0, 0;
Grad_t<dim> Eps_soft; Eps_soft << eps_soft, 0, 0, 0;
// verify uniaxial tension patch test
for (const auto & pixel: sys) {
if (pixel[0] < Dim_t(nb_lays)) {
BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol);
} else {
BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol);
}
}
delEps0 = Grad_t<dim>::Zero();
delEps0(0, 1) = delEps0(1, 0) = eps0;
SolverCG<dim> cg2{sys, cg_tol, maxiter, bool(verbose)};
result = newton_cg(sys, delEps0, cg2, newton_tol,
equil_tol, verbose);
Eps_hard << 0, eps_hard, eps_hard, 0;
Eps_soft << 0, eps_soft, eps_soft, 0;
// verify pure shear patch test
for (const auto & pixel: sys) {
if (pixel[0] < Dim_t(nb_lays)) {
BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol);
} else {
BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol);
}
}
}
#endif
BOOST_AUTO_TEST_SUITE_END
();
}
// muSpectre
Event Timeline
Log In to Comment