Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93436797
intersection_volume_calculator.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 28, 18:16
Size
8 KB
Mime Type
text/x-c
Expires
Sat, Nov 30, 18:16 (2 d)
Engine
blob
Format
Raw Data
Handle
22637259
Attached To
rMUSPECTRE µSpectre
intersection_volume_calculator.hh
View Options
/**
* @file intersection_volume_calculator.hh
*
* @author Ali Falsafi <ali.falsafi@epfl.ch>
*
* @date 04 June 2018
*
* @brief common operations on pixel addressing
*
* Copyright © 2018 Ali Falsafi
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef INTERSECTION_VOLUME_CALCULATOR_H
#define INTERSECTION_VOLUME_CALCULATOR_H
//#gnclude <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <CGAL/Polyhedron_items_with_id_3.h>
#include <CGAL/Aff_transformation_3.h>
#include <CGAL/convex_hull_3.h>
#include <CGAL/Surface_mesh.h>
#include "common/ccoord_operations.hh"
#include "common/common.hh"
#include <vector>
#include <fstream>
#include <math.h>
namespace
muSpectre
{
typedef
CGAL
::
Exact_predicates_exact_constructions_kernel
Kernel
;
typedef
CGAL
::
Polyhedron_3
<
Kernel
,
CGAL
::
Polyhedron_items_with_id_3
>
Polyhedron
;
typedef
CGAL
::
Nef_polyhedron_3
<
Kernel
>
Nef_polyhedron
;
typedef
Polyhedron
::
HalfedgeDS
HalfedgeDS
;
typedef
Kernel
::
Point_3
Point_3
;
typedef
Kernel
::
Vector_3
Vector_3
;
typedef
Kernel
::
Tetrahedron_3
Tetrahedron
;
typedef
Polyhedron
::
Vertex_iterator
Vertex_iterator
;
typedef
Polyhedron
::
Facet_iterator
Facet_iterator
;
typedef
Polyhedron
::
Halfedge_around_facet_circulator
Hafc
;
typedef
CGAL
::
Aff_transformation_3
<
Kernel
>
Transformation_mat
;
using
Dim_t
=
int
;
using
Real
=
double
;
inline
Polyhedron
node_polyhedron_generator
(
std
::
array
<
Real
,
3
>
origin
,
std
::
array
<
Real
,
3
>
lengths
)
{
std
::
vector
<
Point_3
>
node_vertices
;
node_vertices
.
push_back
(
Point_3
(
origin
[
0
]
,
origin
[
1
]
,
origin
[
2
]
));
node_vertices
.
push_back
(
Point_3
(
origin
[
0
]
+
lengths
[
0
]
,
origin
[
1
]
,
origin
[
2
]
));
node_vertices
.
push_back
(
Point_3
(
origin
[
0
]
,
origin
[
1
]
+
lengths
[
1
],
origin
[
2
]
));
node_vertices
.
push_back
(
Point_3
(
origin
[
0
]
,
origin
[
1
]
,
origin
[
2
]
+
lengths
[
2
]));
node_vertices
.
push_back
(
Point_3
(
origin
[
0
]
,
origin
[
1
]
+
lengths
[
1
],
origin
[
2
]
+
lengths
[
2
]));
node_vertices
.
push_back
(
Point_3
(
origin
[
0
]
+
lengths
[
0
]
,
origin
[
1
]
,
origin
[
2
]
+
lengths
[
2
]));
node_vertices
.
push_back
(
Point_3
(
origin
[
0
]
+
lengths
[
0
]
,
origin
[
1
]
+
lengths
[
1
],
origin
[
2
]
));
node_vertices
.
push_back
(
Point_3
(
origin
[
0
]
+
lengths
[
0
]
,
origin
[
1
]
+
lengths
[
1
],
origin
[
2
]
+
lengths
[
2
]));
Polyhedron
node_poly
;
CGAL
::
convex_hull_3
(
node_vertices
.
begin
(),
node_vertices
.
end
(),
node_poly
);
return
node_poly
;
}
inline
Polyhedron
convex_polyhedron_generator
(
std
::
vector
<
std
::
array
<
Real
,
3
>>
convex_poly_vertices
)
{
std
::
vector
<
Point_3
>
poly_vertices
;
for
(
auto
&&
point:
convex_poly_vertices
){
poly_vertices
.
push_back
(
Point_3
(
point
[
0
],
point
[
1
],
point
[
2
]));
}
Polyhedron
convex_poly
;
CGAL
::
convex_hull_3
(
poly_vertices
.
begin
(),
poly_vertices
.
end
(),
convex_poly
);
return
convex_poly
;
}
template
<
Dim_t
DimS
>
class
Correction
{
public
:
std
::
array
<
Real
,
3
>
correct_origin
(
std
::
array
<
Real
,
DimS
>
array
);
std
::
array
<
Real
,
3
>
correct_length
(
std
::
array
<
Real
,
DimS
>
array
);
std
::
vector
<
std
::
array
<
Real
,
3
>>
correct_vector
(
std
::
vector
<
std
::
array
<
Real
,
DimS
>>
vector
);
};
template
<>
class
Correction
<
3
>
{
public
:
std
::
array
<
Real
,
3
>
correct_origin
(
std
::
array
<
Real
,
3
>
array
){
return
array
;
}
std
::
array
<
Real
,
3
>
correct_length
(
std
::
array
<
Real
,
3
>
array
){
return
array
;
}
std
::
vector
<
std
::
array
<
Real
,
3
>>
correct_vector
(
std
::
vector
<
std
::
array
<
Real
,
3
>>
vertices
){
std
::
vector
<
std
::
array
<
Real
,
3
>>
corrected_convex_poly_vertices
;
return
vertices
;
}
};
template
<>
class
Correction
<
2
>
{
public
:
std
::
vector
<
std
::
array
<
Real
,
3
>>
correct_vector
(
std
::
vector
<
std
::
array
<
Real
,
2
>>
vertices
){
std
::
vector
<
std
::
array
<
Real
,
3
>>
corrected_convex_poly_vertices
;
for
(
auto
&&
vertice
:
vertices
){
corrected_convex_poly_vertices
.
push_back
({
vertice
[
0
],
vertice
[
1
],
0.0
});
corrected_convex_poly_vertices
.
push_back
({
vertice
[
0
],
vertice
[
1
],
1.0
});
}
return
corrected_convex_poly_vertices
;
}
std
::
array
<
Real
,
3
>
correct_origin
(
std
::
array
<
Real
,
2
>
array
){
return
std
::
array
<
Real
,
3
>
{
array
[
0
],
array
[
1
],
0.0
};
}
std
::
array
<
Real
,
3
>
correct_length
(
std
::
array
<
Real
,
2
>
array
){
return
std
::
array
<
Real
,
3
>
{
array
[
0
],
array
[
1
],
1.0
};
}
};
template
<
Dim_t
DimS
>
inline
Real
intersection_volume_calculator
(
std
::
vector
<
std
::
array
<
Real
,
DimS
>>
convex_poly_vertices
,
std
::
array
<
Real
,
DimS
>
origin
,
std
::
array
<
Real
,
DimS
>
lengths
){
Correction
<
DimS
>
correction
;
std
::
vector
<
std
::
array
<
Real
,
3
>>
corrected_convex_poly_vertices
(
correction
.
correct_vector
(
convex_poly_vertices
));
std
::
array
<
Real
,
3
>
corrected_origin
(
correction
.
correct_origin
(
origin
));
std
::
array
<
Real
,
3
>
corrected_lengths
(
correction
.
correct_length
(
lengths
));
std
::
vector
<
Point_3
>
result_vertex
;
std
::
vector
<
std
::
size_t
>
a_result_facet
;
Vector_3
result_vector
;
Point_3
center_point
=
Point_3
(
0.0
,
0.0
,
0.0
)
;
Point_3
origin_coordinate_point
(
0
,
0
,
0
),
tet_vertices
[
4
];
Real
return_volume
=
0.0
;
Polyhedron
node_poly
,
convex_poly
,
result_poly
;
Tetrahedron
tetra
;
node_poly
=
node_polyhedron_generator
(
corrected_origin
,
corrected_lengths
);
convex_poly
=
convex_polyhedron_generator
(
corrected_convex_poly_vertices
);
Nef_polyhedron
convex_poly_nef
,
node_poly_nef
,
result_nef
;
convex_poly_nef
=
Nef_polyhedron
(
convex_poly
);
node_poly_nef
=
Nef_polyhedron
(
node_poly
);
//computing the intersection:
result_nef
=
convex_poly_nef
*
node_poly_nef
;
if
(
result_nef
.
is_simple
()
and
not
result_nef
.
is_empty
())
{
result_nef
.
convert_to_Polyhedron
(
result_poly
);
//extracting vertex
int
v_id
=
0
;
for
(
Vertex_iterator
v
=
result_poly
.
vertices_begin
();
v
!=
result_poly
.
vertices_end
();
++
v
){
result_vertex
.
push_back
(
v
->
point
());
result_vector
=
v
->
point
()
-
origin_coordinate_point
;
center_point
=
center_point
+
result_vector
;
v
->
id
()
=
v_id
++
;
}
//calculating the center point of the resultant polyhedron:
Transformation_mat
scale
(
1
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
1
,
0
,
v_id
);
center_point
=
scale
(
center_point
);
tet_vertices
[
0
]
=
center_point
;
int
f_id
=
0
;
for
(
Facet_iterator
f
=
result_poly
.
facets_begin
();
f
!=
result_poly
.
facets_end
();
++
f
){
a_result_facet
.
clear
();
f
->
id
()
=
f_id
++
;
Hafc
circ
=
f
->
facet_begin
();
//assignig corresponding vertex to facets:
do
{
a_result_facet
.
push_back
(
circ
->
vertex
()
->
id
());
}
while
(
++
circ
!=
f
->
facet_begin
());
//making tetreahedrals to calculate volumes:
for
(
int
ii
=
0
;
ii
<
3
;
ii
++
)
tet_vertices
[
ii
+
1
]
=
result_vertex
[
a_result_facet
[
ii
]];
//calculating volumes:
tetra
=
Tetrahedron
(
tet_vertices
[
0
],
tet_vertices
[
1
],
tet_vertices
[
2
],
tet_vertices
[
3
]);
return_volume
+=
CGAL
::
to_double
(
tetra
.
volume
());
}
}
return
return_volume
;
}
}
#endif
//INTERSECTION_VOLUME_CALCULATOR
Event Timeline
Log In to Comment