Page MenuHomec4science

material_hyperelastic1.hh
No OneTemporary

File Metadata

Created
Tue, Jul 16, 18:53

material_hyperelastic1.hh

/**
* file material_hyperelastic1.hh
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 13 Nov 2017
*
* @brief Implementation for hyperelastic reference material like in de Geus
* 2017. This follows the simplest and likely not most efficient
* implementation (with exception of the Python law)
*
* @section LICENCE
*
* Copyright (C) 2017 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "materials/material_muSpectre_base.hh"
#ifndef MATERIAL_HYPERELASTIC1_H
#define MATERIAL_HYPERELASTIC1_H
namespace muSpectre {
//! DimS spatial dimension (dimension of problem
//! DimM material_dimension (dimension of constitutive law)
template<Dim_t DimS, Dim_t DimM>
class MaterialHyperElastic1: public MaterialMuSpectre<MaterialHyperElastic1>
{
public:
using Parent = public MaterialMuSpectre<MaterialHyperElastic1>;
// declare what type of strain measure your law takes as input
constexpr static auto strain_measure{MatTB::StrainMeasure::GreenLagrange};
// declare what type of stress measure your law yields as output
constexpr static auto strain_measure{MatTB::StressMeasure::PK2};
// declare whether the derivative of stress with respect to strain is uniform
constexpr static bool uniform_stiffness = true;
// declare the type in which you wish to receive your strain measure
using Strain_t = Eigen::Matrix<Real, DimM, DimM>;
using Stress_t = Strain_t;
using Stiffness_t = Eigen::TensorFixedSize
<Real, Eigen::Sizes<DimM, DimM, DimM, Dim>, Eigen::RowMajor>;
//! Default constructor
MaterialHyperElastic1() = delete;
//! Copy constructor
MaterialHyperElastic1(const MaterialHyperElastic1 &other) = delete;
//! Construct by name, Young's modulus and Poisson's ratio
MaterialMuSpectre(std::string name, Real young, real Poisson);
//! Move constructor
MaterialHyperElastic1(MaterialHyperElastic1 &&other) noexcept = delete;
//! Destructor
virtual ~MaterialHyperElastic1() noexcept = default;
//! Copy assignment operator
MaterialHyperElastic1& operator=(const MaterialHyperElastic1 &other) = delete;
//! Move assignment operator
MaterialHyperElastic1& operator=(MaterialHyperElastic1 &&other) noexcept = delete;
decltype(auto) evaluate_stress(const Strain_t & E);
const Stiffness_t & get_stiffness() const;
protected:
const Real young, poisson, lambda, mu;
const Stiffness_t C;
private:
};
} // muSpectre
#endif /* MATERIAL_HYPERELASTIC1_H */

Event Timeline