Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91095441
test_solver_newton_cg.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 20:37
Size
7 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 20:37 (2 d)
Engine
blob
Format
Raw Data
Handle
22185236
Attached To
rMUSPECTRE µSpectre
test_solver_newton_cg.cc
View Options
/**
* @file test_solver_newton_cg.cc
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 20 Dec 2017
*
* @brief Tests for the standard Newton-Raphson + Conjugate Gradient solver
*
* Copyright © 2017 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "tests.hh"
#include "solver/solvers.hh"
#include "solver/solver_cg.hh"
#include "solver/solver_cg_eigen.hh"
#include "fft/fftw_engine.hh"
#include "fft/projection_finite_strain_fast.hh"
#include "materials/material_linear_elastic1.hh"
#include "common/iterators.hh"
#include "common/ccoord_operations.hh"
#include "system/system_factory.hh"
namespace
muSpectre
{
BOOST_AUTO_TEST_SUITE
(
newton_cg_tests
);
BOOST_AUTO_TEST_CASE
(
manual_construction_test
)
{
// constexpr Dim_t dim{twoD};
constexpr
Dim_t
dim
{
threeD
};
// constexpr Ccoord_t<dim> resolutions{3, 3};
// constexpr Rcoord_t<dim> lengths{2.3, 2.7};
constexpr
Ccoord_t
<
dim
>
resolutions
{
5
,
5
,
5
};
constexpr
Rcoord_t
<
dim
>
lengths
{
5
,
5
,
5
};
auto
fft_ptr
{
std
::
make_unique
<
FFTW_Engine
<
dim
,
dim
>>
(
resolutions
,
lengths
)};
auto
proj_ptr
{
std
::
make_unique
<
ProjectionFiniteStrainFast
<
dim
,
dim
>>
(
std
::
move
(
fft_ptr
))};
SystemBase
<
dim
,
dim
>
sys
(
std
::
move
(
proj_ptr
));
using
Mat_t
=
MaterialLinearElastic1
<
dim
,
dim
>
;
//const Real Young{210e9}, Poisson{.33};
const
Real
Young
{
1.0030648180242636
},
Poisson
{
0.29930675909878679
};
// const Real lambda{Young*Poisson/((1+Poisson)*(1-2*Poisson))};
// const Real mu{Young/(2*(1+Poisson))};
auto
&
Material_hard
=
Mat_t
::
make
(
sys
,
"hard"
,
10
*
Young
,
Poisson
);
auto
&
Material_soft
=
Mat_t
::
make
(
sys
,
"soft"
,
Young
,
Poisson
);
for
(
auto
&&
tup:
akantu
::
enumerate
(
sys
))
{
auto
&&
pixel
=
std
::
get
<
1
>
(
tup
);
if
(
std
::
get
<
0
>
(
tup
)
==
0
)
{
Material_hard
.
add_pixel
(
pixel
);
}
else
{
Material_soft
.
add_pixel
(
pixel
);
}
}
sys
.
initialise
();
Grad_t
<
dim
>
delF0
;
delF0
<<
0
,
1.
,
0
,
0
,
0
,
0
,
0
,
0
,
0
;
constexpr
Real
cg_tol
{
1e-8
},
newton_tol
{
1e-5
};
constexpr
Uint
maxiter
{
CcoordOps
::
get_size
(
resolutions
)
*
ipow
(
dim
,
secondOrder
)
*
10
};
constexpr
bool
verbose
{
false
};
GradIncrements
<
dim
>
grads
;
grads
.
push_back
(
delF0
);
SolverCG
<
dim
>
cg
{
sys
,
cg_tol
,
maxiter
,
bool
(
verbose
)};
Eigen
::
ArrayXXd
res1
{
de_geus
(
sys
,
grads
,
cg
,
newton_tol
,
verbose
)[
0
].
grad
};
SolverCG
<
dim
>
cg2
{
sys
,
cg_tol
,
maxiter
,
bool
(
verbose
)};
Eigen
::
ArrayXXd
res2
{
newton_cg
(
sys
,
grads
,
cg2
,
newton_tol
,
verbose
)[
0
].
grad
};
BOOST_CHECK_LE
(
abs
(
res1
-
res2
).
mean
(),
cg_tol
);
}
BOOST_AUTO_TEST_CASE
(
small_strain_patch_test
)
{
constexpr
Dim_t
dim
{
twoD
};
using
Ccoord
=
Ccoord_t
<
dim
>
;
using
Rcoord
=
Rcoord_t
<
dim
>
;
constexpr
Ccoord
resolutions
{
CcoordOps
::
get_cube
<
dim
>
(
3
)};
constexpr
Rcoord
lengths
{
CcoordOps
::
get_cube
<
dim
>
(
1.
)};
constexpr
Formulation
form
{
Formulation
::
small_strain
};
// number of layers in the hard material
constexpr
Uint
nb_lays
{
1
};
constexpr
Real
contrast
{
2
};
static_assert
(
nb_lays
<
resolutions
[
0
],
"the number or layers in the hard material must be smaller "
"than the total number of layers in dimension 0"
);
auto
sys
{
make_system
(
resolutions
,
lengths
,
form
)};
using
Mat_t
=
MaterialLinearElastic1
<
dim
,
dim
>
;
constexpr
Real
Young
{
2.
},
Poisson
{
.33
};
auto
material_hard
{
std
::
make_unique
<
Mat_t
>
(
"hard"
,
contrast
*
Young
,
Poisson
)};
auto
material_soft
{
std
::
make_unique
<
Mat_t
>
(
"soft"
,
Young
,
Poisson
)};
for
(
const
auto
&
pixel:
sys
)
{
if
(
pixel
[
0
]
<
Dim_t
(
nb_lays
))
{
material_hard
->
add_pixel
(
pixel
);
}
else
{
material_soft
->
add_pixel
(
pixel
);
}
}
sys
.
add_material
(
std
::
move
(
material_hard
));
sys
.
add_material
(
std
::
move
(
material_soft
));
sys
.
initialise
();
Grad_t
<
dim
>
delEps0
{
Grad_t
<
dim
>::
Zero
()};
constexpr
Real
eps0
=
1.
;
//delEps0(0, 1) = delEps0(1, 0) = eps0;
delEps0
(
0
,
0
)
=
eps0
;
constexpr
Real
cg_tol
{
1e-8
},
newton_tol
{
1e-5
},
equil_tol
{
1e-10
};
constexpr
Uint
maxiter
{
dim
*
10
};
constexpr
Dim_t
verbose
{
0
};
SolverCGEigen
<
dim
>
cg
{
sys
,
cg_tol
,
maxiter
,
bool
(
verbose
)};
auto
result
=
de_geus
(
sys
,
delEps0
,
cg
,
newton_tol
,
equil_tol
,
verbose
);
if
(
verbose
)
{
std
::
cout
<<
"result:"
<<
std
::
endl
<<
result
.
grad
<<
std
::
endl
;
std
::
cout
<<
"mean strain = "
<<
std
::
endl
<<
sys
.
get_strain
().
get_map
().
mean
()
<<
std
::
endl
;
}
/**
* verification of resultant strains: subscript ₕ for hard and ₛ
* for soft, Nₕ is nb_lays and Nₜₒₜ is resolutions, k is contrast
*
* Δl = εl = Δlₕ + Δlₛ = εₕlₕ+εₛlₛ
* => ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ
*
* σ is constant across all layers
* σₕ = σₛ
* => Eₕ εₕ = Eₛ εₛ
* => εₕ = 1/k εₛ
* => ε / (1/k Nₕ/Nₜₒₜ + (Nₜₒₜ-Nₕ)/Nₜₒₜ) = εₛ
*/
constexpr
Real
factor
{
1
/
contrast
*
Real
(
nb_lays
)
/
resolutions
[
0
]
+
1.
-
nb_lays
/
Real
(
resolutions
[
0
])};
constexpr
Real
eps_soft
{
eps0
/
factor
};
constexpr
Real
eps_hard
{
eps_soft
/
contrast
};
if
(
verbose
)
{
std
::
cout
<<
"εₕ = "
<<
eps_hard
<<
", εₛ = "
<<
eps_soft
<<
std
::
endl
;
std
::
cout
<<
"ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ"
<<
std
::
endl
;
}
Grad_t
<
dim
>
Eps_hard
;
Eps_hard
<<
eps_hard
,
0
,
0
,
0
;
Grad_t
<
dim
>
Eps_soft
;
Eps_soft
<<
eps_soft
,
0
,
0
,
0
;
// verify uniaxial tension patch test
for
(
const
auto
&
pixel:
sys
)
{
if
(
pixel
[
0
]
<
Dim_t
(
nb_lays
))
{
BOOST_CHECK_LE
((
Eps_hard
-
sys
.
get_strain
().
get_map
()[
pixel
]).
norm
(),
tol
);
}
else
{
BOOST_CHECK_LE
((
Eps_soft
-
sys
.
get_strain
().
get_map
()[
pixel
]).
norm
(),
tol
);
}
}
delEps0
=
Grad_t
<
dim
>::
Zero
();
delEps0
(
0
,
1
)
=
delEps0
(
1
,
0
)
=
eps0
;
SolverCG
<
dim
>
cg2
{
sys
,
cg_tol
,
maxiter
,
bool
(
verbose
)};
result
=
newton_cg
(
sys
,
delEps0
,
cg2
,
newton_tol
,
equil_tol
,
verbose
);
Eps_hard
<<
0
,
eps_hard
,
eps_hard
,
0
;
Eps_soft
<<
0
,
eps_soft
,
eps_soft
,
0
;
// verify pure shear patch test
for
(
const
auto
&
pixel:
sys
)
{
if
(
pixel
[
0
]
<
Dim_t
(
nb_lays
))
{
BOOST_CHECK_LE
((
Eps_hard
-
sys
.
get_strain
().
get_map
()[
pixel
]).
norm
(),
tol
);
}
else
{
BOOST_CHECK_LE
((
Eps_soft
-
sys
.
get_strain
().
get_map
()[
pixel
]).
norm
(),
tol
);
}
}
}
BOOST_AUTO_TEST_SUITE_END
();
}
// muSpectre
Event Timeline
Log In to Comment