Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91956498
deprecated_solvers.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 02:56
Size
13 KB
Mime Type
text/x-c
Expires
Mon, Nov 18, 02:56 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22353415
Attached To
rMUSPECTRE µSpectre
deprecated_solvers.cc
View Options
/**
* @file solvers.cc
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 20 Dec 2017
*
* @brief implementation of solver functions
*
* Copyright © 2017 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "solver/deprecated_solvers.hh"
#include "solver/deprecated_solver_cg.hh"
#include "common/iterators.hh"
#include <Eigen/IterativeLinearSolvers>
#include <iomanip>
#include <cmath>
namespace
muSpectre
{
template
<
Dim_t
DimS
,
Dim_t
DimM
>
std
::
vector
<
OptimizeResult
>
deprecated_de_geus
(
CellBase
<
DimS
,
DimM
>
&
cell
,
const
GradIncrements
<
DimM
>
&
delFs
,
DeprecatedSolverBase
<
DimS
,
DimM
>
&
solver
,
Real
newton_tol
,
Real
equil_tol
,
Dim_t
verbose
)
{
using
Field_t
=
typename
MaterialBase
<
DimS
,
DimM
>::
StrainField_t
;
const
Communicator
&
comm
=
cell
.
get_communicator
();
auto
solver_fields
{
std
::
make_unique
<
GlobalFieldCollection
<
DimS
>>
()};
solver_fields
->
initialise
(
cell
.
get_subdomain_resolutions
(),
cell
.
get_subdomain_locations
());
// Corresponds to symbol δF or δε
auto
&
incrF
{
make_field
<
Field_t
>
(
"δF"
,
*
solver_fields
)};
// Corresponds to symbol ΔF or Δε
auto
&
DeltaF
{
make_field
<
Field_t
>
(
"ΔF"
,
*
solver_fields
)};
// field to store the rhs for cg calculations
auto
&
rhs
{
make_field
<
Field_t
>
(
"rhs"
,
*
solver_fields
)};
solver
.
initialise
();
if
(
solver
.
get_maxiter
()
==
0
)
{
solver
.
set_maxiter
(
cell
.
size
()
*
DimM
*
DimM
*
10
);
}
size_t
count_width
{};
const
auto
form
{
cell
.
get_formulation
()};
std
::
string
strain_symb
{};
if
(
verbose
>
0
&&
comm
.
rank
()
==
0
)
{
//setup of algorithm 5.2 in Nocedal, Numerical Optimization (p. 111)
std
::
cout
<<
"de Geus-"
<<
solver
.
name
()
<<
" for "
;
switch
(
form
)
{
case
Formulation
::
small_strain:
{
strain_symb
=
"ε"
;
std
::
cout
<<
"small"
;
break
;
}
case
Formulation
::
finite_strain:
{
strain_symb
=
"F"
;
std
::
cout
<<
"finite"
;
break
;
}
default
:
throw
SolverError
(
"unknown formulation"
);
break
;
}
std
::
cout
<<
" strain with"
<<
std
::
endl
<<
"newton_tol = "
<<
newton_tol
<<
", cg_tol = "
<<
solver
.
get_tol
()
<<
" maxiter = "
<<
solver
.
get_maxiter
()
<<
" and Δ"
<<
strain_symb
<<
" ="
<<
std
::
endl
;
for
(
auto
&&
tup:
akantu
::
enumerate
(
delFs
))
{
auto
&&
counter
{
std
::
get
<
0
>
(
tup
)};
auto
&&
grad
{
std
::
get
<
1
>
(
tup
)};
std
::
cout
<<
"Step "
<<
counter
+
1
<<
":"
<<
std
::
endl
<<
grad
<<
std
::
endl
;
}
count_width
=
size_t
(
std
::
log10
(
solver
.
get_maxiter
()))
+
1
;
}
// initialise F = I or ε = 0
auto
&
F
{
cell
.
get_strain
()};
switch
(
form
)
{
case
Formulation
::
finite_strain:
{
F
.
get_map
()
=
Matrices
::
I2
<
DimM
>
();
break
;
}
case
Formulation
::
small_strain:
{
F
.
get_map
()
=
Matrices
::
I2
<
DimM
>
().
Zero
();
for
(
const
auto
&
delF:
delFs
)
{
if
(
!
check_symmetry
(
delF
))
{
throw
SolverError
(
"all Δε must be symmetric!"
);
}
}
break
;
}
default
:
throw
SolverError
(
"Unknown formulation"
);
break
;
}
// initialise return value
std
::
vector
<
OptimizeResult
>
ret_val
{};
Grad_t
<
DimM
>
previous_grad
{
Grad_t
<
DimM
>::
Zero
()};
for
(
const
auto
&
delF:
delFs
)
{
//incremental loop
std
::
string
message
{
"Has not converged"
};
Real
incrNorm
{
2
*
newton_tol
},
gradNorm
{
1
};
Real
stressNorm
{
2
*
equil_tol
};
bool
has_converged
{
false
};
auto
convergence_test
=
[
&
incrNorm
,
&
gradNorm
,
&
newton_tol
,
&
stressNorm
,
&
equil_tol
,
&
message
,
&
has_converged
]
()
{
bool
incr_test
=
incrNorm
/
gradNorm
<=
newton_tol
;
bool
stress_test
=
stressNorm
<
equil_tol
;
if
(
incr_test
)
{
message
=
"Residual tolerance reached"
;
}
else
if
(
stress_test
)
{
message
=
"Reached stress divergence tolerance"
;
}
has_converged
=
incr_test
||
stress_test
;
return
has_converged
;
};
Uint
newt_iter
{
0
};
for
(;
(
newt_iter
<
solver
.
get_maxiter
())
&&
(
!
has_converged
||
(
newt_iter
==
1
));
++
newt_iter
)
{
// obtain material response
auto
res_tup
{
cell
.
evaluate_stress_tangent
(
F
)};
auto
&
P
{
std
::
get
<
0
>
(
res_tup
)};
auto
&
K
{
std
::
get
<
1
>
(
res_tup
)};
auto
tangent_effect
=
[
&
cell
,
&
K
]
(
const
Field_t
&
dF
,
Field_t
&
dP
)
{
cell
.
directional_stiffness
(
K
,
dF
,
dP
);
};
if
(
newt_iter
==
0
)
{
DeltaF
.
get_map
()
=
-
(
delF
-
previous_grad
);
// neg sign because rhs
tangent_effect
(
DeltaF
,
rhs
);
stressNorm
=
std
::
sqrt
(
comm
.
sum
(
rhs
.
eigen
().
matrix
().
squaredNorm
()));
if
(
convergence_test
())
{
break
;
}
incrF
.
eigenvec
()
=
solver
.
solve
(
rhs
.
eigenvec
(),
incrF
.
eigenvec
());
F
.
eigen
()
-=
DeltaF
.
eigen
();
}
else
{
rhs
.
eigen
()
=
-
P
.
eigen
();
cell
.
project
(
rhs
);
stressNorm
=
std
::
sqrt
(
comm
.
sum
(
rhs
.
eigen
().
matrix
().
squaredNorm
()));
if
(
convergence_test
())
{
break
;
}
incrF
.
eigen
()
=
0
;
incrF
.
eigenvec
()
=
solver
.
solve
(
rhs
.
eigenvec
(),
incrF
.
eigenvec
());
}
F
.
eigen
()
+=
incrF
.
eigen
();
incrNorm
=
std
::
sqrt
(
comm
.
sum
(
incrF
.
eigen
().
matrix
().
squaredNorm
()));
gradNorm
=
std
::
sqrt
(
comm
.
sum
(
F
.
eigen
().
matrix
().
squaredNorm
()));
if
(
verbose
>
0
&&
comm
.
rank
()
==
0
)
{
std
::
cout
<<
"at Newton step "
<<
std
::
setw
(
count_width
)
<<
newt_iter
<<
", |δ"
<<
strain_symb
<<
"|/|Δ"
<<
strain_symb
<<
"| = "
<<
std
::
setw
(
17
)
<<
incrNorm
/
gradNorm
<<
", tol = "
<<
newton_tol
<<
std
::
endl
;
if
(
verbose
-
1
>
1
)
{
std
::
cout
<<
"<"
<<
strain_symb
<<
"> ="
<<
std
::
endl
<<
F
.
get_map
().
mean
()
<<
std
::
endl
;
}
}
convergence_test
();
}
// update previous gradient
previous_grad
=
delF
;
ret_val
.
push_back
(
OptimizeResult
{
F
.
eigen
(),
cell
.
get_stress
().
eigen
(),
has_converged
,
Int
(
has_converged
),
message
,
newt_iter
,
solver
.
get_counter
()});
// store history variables here
cell
.
save_history_variables
();
}
return
ret_val
;
}
//! instantiation for two-dimensional cells
template
std
::
vector
<
OptimizeResult
>
deprecated_de_geus
(
CellBase
<
twoD
,
twoD
>
&
cell
,
const
GradIncrements
<
twoD
>&
delF0
,
DeprecatedSolverBase
<
twoD
,
twoD
>
&
solver
,
Real
newton_tol
,
Real
equil_tol
,
Dim_t
verbose
);
//! instantiation for three-dimensional cells
template
std
::
vector
<
OptimizeResult
>
deprecated_de_geus
(
CellBase
<
threeD
,
threeD
>
&
cell
,
const
GradIncrements
<
threeD
>&
delF0
,
DeprecatedSolverBase
<
threeD
,
threeD
>
&
solver
,
Real
newton_tol
,
Real
equil_tol
,
Dim_t
verbose
);
/* ---------------------------------------------------------------------- */
template
<
Dim_t
DimS
,
Dim_t
DimM
>
std
::
vector
<
OptimizeResult
>
deprecated_newton_cg
(
CellBase
<
DimS
,
DimM
>
&
cell
,
const
GradIncrements
<
DimM
>
&
delFs
,
DeprecatedSolverBase
<
DimS
,
DimM
>
&
solver
,
Real
newton_tol
,
Real
equil_tol
,
Dim_t
verbose
)
{
using
Field_t
=
typename
MaterialBase
<
DimS
,
DimM
>::
StrainField_t
;
const
Communicator
&
comm
=
cell
.
get_communicator
();
auto
solver_fields
{
std
::
make_unique
<
GlobalFieldCollection
<
DimS
>>
()};
solver_fields
->
initialise
(
cell
.
get_subdomain_resolutions
(),
cell
.
get_subdomain_locations
());
// Corresponds to symbol δF or δε
auto
&
incrF
{
make_field
<
Field_t
>
(
"δF"
,
*
solver_fields
)};
// field to store the rhs for cg calculations
auto
&
rhs
{
make_field
<
Field_t
>
(
"rhs"
,
*
solver_fields
)};
solver
.
initialise
();
if
(
solver
.
get_maxiter
()
==
0
)
{
solver
.
set_maxiter
(
cell
.
size
()
*
DimM
*
DimM
*
10
);
}
size_t
count_width
{};
const
auto
form
{
cell
.
get_formulation
()};
std
::
string
strain_symb
{};
if
(
verbose
>
0
&&
comm
.
rank
()
==
0
)
{
//setup of algorithm 5.2 in Nocedal, Numerical Optimization (p. 111)
std
::
cout
<<
"Newton-"
<<
solver
.
name
()
<<
" for "
;
switch
(
form
)
{
case
Formulation
::
small_strain:
{
strain_symb
=
"ε"
;
std
::
cout
<<
"small"
;
break
;
}
case
Formulation
::
finite_strain:
{
strain_symb
=
"F"
;
std
::
cout
<<
"finite"
;
break
;
}
default
:
throw
SolverError
(
"unknown formulation"
);
break
;
}
std
::
cout
<<
" strain with"
<<
std
::
endl
<<
"newton_tol = "
<<
newton_tol
<<
", cg_tol = "
<<
solver
.
get_tol
()
<<
" maxiter = "
<<
solver
.
get_maxiter
()
<<
" and Δ"
<<
strain_symb
<<
" ="
<<
std
::
endl
;
for
(
auto
&&
tup:
akantu
::
enumerate
(
delFs
))
{
auto
&&
counter
{
std
::
get
<
0
>
(
tup
)};
auto
&&
grad
{
std
::
get
<
1
>
(
tup
)};
std
::
cout
<<
"Step "
<<
counter
+
1
<<
":"
<<
std
::
endl
<<
grad
<<
std
::
endl
;
}
count_width
=
size_t
(
std
::
log10
(
solver
.
get_maxiter
()))
+
1
;
}
// initialise F = I or ε = 0
auto
&
F
{
cell
.
get_strain
()};
switch
(
cell
.
get_formulation
())
{
case
Formulation
::
finite_strain:
{
F
.
get_map
()
=
Matrices
::
I2
<
DimM
>
();
break
;
}
case
Formulation
::
small_strain:
{
F
.
get_map
()
=
Matrices
::
I2
<
DimM
>
().
Zero
();
for
(
const
auto
&
delF:
delFs
)
{
if
(
!
check_symmetry
(
delF
))
{
throw
SolverError
(
"all Δε must be symmetric!"
);
}
}
break
;
}
default
:
throw
SolverError
(
"Unknown formulation"
);
break
;
}
// initialise return value
std
::
vector
<
OptimizeResult
>
ret_val
{};
Grad_t
<
DimM
>
previous_grad
{
Grad_t
<
DimM
>::
Zero
()};
for
(
const
auto
&
delF:
delFs
)
{
//incremental loop
// apply macroscopic strain increment
for
(
auto
&&
grad:
F
.
get_map
())
{
grad
+=
delF
-
previous_grad
;
}
std
::
string
message
{
"Has not converged"
};
Real
incrNorm
{
2
*
newton_tol
},
gradNorm
{
1
};
Real
stressNorm
{
2
*
equil_tol
};
bool
has_converged
{
false
};
auto
convergence_test
=
[
&
incrNorm
,
&
gradNorm
,
&
newton_tol
,
&
stressNorm
,
&
equil_tol
,
&
message
,
&
has_converged
]
()
{
bool
incr_test
=
incrNorm
/
gradNorm
<=
newton_tol
;
bool
stress_test
=
stressNorm
<
equil_tol
;
if
(
incr_test
)
{
message
=
"Residual tolerance reached"
;
}
else
if
(
stress_test
)
{
message
=
"Reached stress divergence tolerance"
;
}
has_converged
=
incr_test
||
stress_test
;
return
has_converged
;
};
Uint
newt_iter
{
0
};
for
(;
newt_iter
<
solver
.
get_maxiter
()
&&
!
has_converged
;
++
newt_iter
)
{
// obtain material response
auto
res_tup
{
cell
.
evaluate_stress_tangent
(
F
)};
auto
&
P
{
std
::
get
<
0
>
(
res_tup
)};
rhs
.
eigen
()
=
-
P
.
eigen
();
cell
.
project
(
rhs
);
stressNorm
=
std
::
sqrt
(
comm
.
sum
(
rhs
.
eigen
().
matrix
().
squaredNorm
()));
if
(
convergence_test
())
{
break
;
}
incrF
.
eigen
()
=
0
;
incrF
.
eigenvec
()
=
solver
.
solve
(
rhs
.
eigenvec
(),
incrF
.
eigenvec
());
F
.
eigen
()
+=
incrF
.
eigen
();
incrNorm
=
std
::
sqrt
(
comm
.
sum
(
incrF
.
eigen
().
matrix
().
squaredNorm
()));
gradNorm
=
std
::
sqrt
(
comm
.
sum
(
F
.
eigen
().
matrix
().
squaredNorm
()));
if
(
verbose
>
0
&&
comm
.
rank
()
==
0
)
{
std
::
cout
<<
"at Newton step "
<<
std
::
setw
(
count_width
)
<<
newt_iter
<<
", |δ"
<<
strain_symb
<<
"|/|Δ"
<<
strain_symb
<<
"| = "
<<
std
::
setw
(
17
)
<<
incrNorm
/
gradNorm
<<
", tol = "
<<
newton_tol
<<
std
::
endl
;
if
(
verbose
-
1
>
1
)
{
std
::
cout
<<
"<"
<<
strain_symb
<<
"> ="
<<
std
::
endl
<<
F
.
get_map
().
mean
()
<<
std
::
endl
;
}
}
convergence_test
();
}
// update previous gradient
previous_grad
=
delF
;
ret_val
.
push_back
(
OptimizeResult
{
F
.
eigen
(),
cell
.
get_stress
().
eigen
(),
convergence_test
(),
Int
(
convergence_test
()),
message
,
newt_iter
,
solver
.
get_counter
()});
//store history variables for next load increment
cell
.
save_history_variables
();
}
return
ret_val
;
}
//! instantiation for two-dimensional cells
template
std
::
vector
<
OptimizeResult
>
deprecated_newton_cg
(
CellBase
<
twoD
,
twoD
>
&
cell
,
const
GradIncrements
<
twoD
>&
delF0
,
DeprecatedSolverBase
<
twoD
,
twoD
>
&
solver
,
Real
newton_tol
,
Real
equil_tol
,
Dim_t
verbose
);
//! instantiation for three-dimensional cells
template
std
::
vector
<
OptimizeResult
>
deprecated_newton_cg
(
CellBase
<
threeD
,
threeD
>
&
cell
,
const
GradIncrements
<
threeD
>&
delF0
,
DeprecatedSolverBase
<
threeD
,
threeD
>
&
solver
,
Real
newton_tol
,
Real
equil_tol
,
Dim_t
verbose
);
}
// muSpectre
Event Timeline
Log In to Comment