Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91078904
material_linear_elastic1.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 16:00
Size
6 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 16:00 (2 d)
Engine
blob
Format
Raw Data
Handle
22125157
Attached To
rMUSPECTRE µSpectre
material_linear_elastic1.hh
View Options
/**
* @file material_linear_elastic1.hh
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 13 Nov 2017
*
* @brief Implementation for linear elastic reference material like in de Geus
* 2017. This follows the simplest and likely not most efficient
* implementation (with exception of the Python law)
*
* Copyright © 2017 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef MATERIAL_LINEAR_ELASTIC1_H
#define MATERIAL_LINEAR_ELASTIC1_H
#include "common/common.hh"
#include "materials/material_muSpectre_base.hh"
#include "materials/materials_toolbox.hh"
namespace muSpectre {
template<Dim_t DimS, Dim_t DimM>
class MaterialLinearElastic1;
/**
* traits for objective linear elasticity
*/
template <Dim_t DimS, Dim_t DimM>
struct MaterialMuSpectre_traits<MaterialLinearElastic1<DimS, DimM>> {
using Parent = MaterialMuSpectre_traits<void>;//!< base for elasticity
//! global field collection
using GFieldCollection_t = typename
MaterialBase<DimS, DimM>::GFieldCollection_t;
//! expected map type for strain fields
using StrainMap_t = MatrixFieldMap<GFieldCollection_t, Real, DimM, DimM, true>;
//! expected map type for stress fields
using StressMap_t = MatrixFieldMap<GFieldCollection_t, Real, DimM, DimM>;
//! expected map type for tangent stiffness fields
using TangentMap_t = T4MatrixFieldMap<GFieldCollection_t, Real, DimM>;
//! declare what type of strain measure your law takes as input
constexpr static auto strain_measure{StrainMeasure::GreenLagrange};
//! declare what type of stress measure your law yields as output
constexpr static auto stress_measure{StressMeasure::PK2};
//! elasticity without internal variables
using InternalVariables = std::tuple<>;
};
//! DimS spatial dimension (dimension of problem
//! DimM material_dimension (dimension of constitutive law)
/**
* implements objective linear elasticity
*/
template<Dim_t DimS, Dim_t DimM>
class MaterialLinearElastic1:
public MaterialMuSpectre<MaterialLinearElastic1<DimS, DimM>, DimS, DimM>
{
public:
//! base class
using Parent = MaterialMuSpectre<MaterialLinearElastic1, DimS, DimM>;
/**
* type used to determine whether the
* `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only
* stresses or also tangent stiffnesses
*/
using NeedTangent = typename Parent::NeedTangent;
//! global field collection
using Stiffness_t = Eigen::TensorFixedSize
<Real, Eigen::Sizes<DimM, DimM, DimM, DimM>>;
//! traits of this material
using traits = MaterialMuSpectre_traits<MaterialLinearElastic1>;
//! this law does not have any internal variables
using InternalVariables = typename traits::InternalVariables;
//! Hooke's law implementation
using Hooke = typename
MatTB::Hooke<DimM,
typename traits::StrainMap_t::reference,
typename traits::TangentMap_t::reference>;
//! Default constructor
MaterialLinearElastic1() = delete;
//! Copy constructor
MaterialLinearElastic1(const MaterialLinearElastic1 &other) = delete;
//! Construct by name, Young's modulus and Poisson's ratio
MaterialLinearElastic1(std::string name, Real young, Real poisson);
//! Move constructor
MaterialLinearElastic1(MaterialLinearElastic1 &&other) = delete;
//! Destructor
virtual ~MaterialLinearElastic1() = default;
//! Copy assignment operator
MaterialLinearElastic1& operator=(const MaterialLinearElastic1 &other) = delete;
//! Move assignment operator
MaterialLinearElastic1& operator=(MaterialLinearElastic1 &&other) = delete;
/**
* evaluates second Piola-Kirchhoff stress given the Green-Lagrange
* strain (or Cauchy stress if called with a small strain tensor)
*/
template <class s_t>
inline decltype(auto) evaluate_stress(s_t && E);
/**
* evaluates both second Piola-Kirchhoff stress and stiffness given
* the Green-Lagrange strain (or Cauchy stress and stiffness if
* called with a small strain tensor)
*/
template <class s_t>
inline decltype(auto) evaluate_stress_tangent(s_t && E);
/**
* return the empty internals tuple
*/
InternalVariables & get_internals() {
return this->internal_variables;};
protected:
const Real young; //!< Young's modulus
const Real poisson;//!< Poisson's ratio
const Real lambda; //!< first Lamé constant
const Real mu; //!< second Lamé constant (shear modulus)
const Stiffness_t C; //!< stiffness tensor
//! empty tuple
InternalVariables internal_variables{};
private:
};
/* ---------------------------------------------------------------------- */
template <Dim_t DimS, Dim_t DimM>
template <class s_t>
decltype(auto)
MaterialLinearElastic1<DimS, DimM>::evaluate_stress(s_t && E) {
return Hooke::evaluate_stress(this->lambda, this->mu,
std::move(E));
}
/* ---------------------------------------------------------------------- */
template <Dim_t DimS, Dim_t DimM>
template <class s_t>
decltype(auto)
MaterialLinearElastic1<DimS, DimM>::evaluate_stress_tangent(s_t && E) {
using Tangent_t = typename traits::TangentMap_t::reference;
// using mat = Eigen::Matrix<Real, DimM, DimM>;
// mat ecopy{E};
// std::cout << "E" << std::endl << ecopy << std::endl;
// std::cout << "P1" << std::endl << mat{
// std::get<0>(Hooke::evaluate_stress(this->lambda, this->mu,
// Tangent_t(const_cast<double*>(this->C.data())),
// std::move(E)))} << std::endl;
return Hooke::evaluate_stress(this->lambda, this->mu,
Tangent_t(const_cast<double*>(this->C.data())),
std::move(E));
}
} // muSpectre
#endif /* MATERIAL_LINEAR_ELASTIC1_H */
Event Timeline
Log In to Comment