Page MenuHomec4science

bind_py_material.cc
No OneTemporary

File Metadata

Created
Tue, May 21, 19:57

bind_py_material.cc

/**
* @file bind_py_material.cc
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 09 Jan 2018
*
* @brief python bindings for µSpectre's materials
*
* Copyright © 2018 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Emacs; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "common/common.hh"
#include "materials/material_linear_elastic1.hh"
#include "materials/material_linear_elastic2.hh"
#include "materials/material_linear_elastic3.hh"
#include "materials/material_linear_elastic4.hh"
#include "materials/material_anisotropic.hh"
#include "materials/material_orthotropic.hh"
#include "materials/material_base.hh"
#include "cell/cell_base.hh"
#include "common/field_collection.hh"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/eigen.h>
#include <sstream>
#include <string>
using namespace muSpectre;
namespace py = pybind11;
using namespace pybind11::literals;
template <Dim_t dim>
void add_material_base_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialBase" << dim << 'd';
const auto name{name_stream.str()};
using Mat_t = MaterialBase<dim, dim>;
py::class_<Mat_t>(mod, name.c_str());
}
/**
* python binding for the optionally objective form of Anisotropic material
*/
template <Dim_t dim>
void add_material_anisotropic_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialAnisotropic_" << dim << 'd';
const auto name{name_stream.str()};
using Mat_t = MaterialAnisotropic<dim, dim>;
using Sys_t = CellBase<dim, dim>;
using MatBase_t = MaterialBase<dim, dim>;
py::class_<Mat_t, MatBase_t>(mod, name.c_str())
.def_static(
"make",
[](Sys_t & sys, std::string n, std::vector<Real> input) -> Mat_t & {
return Mat_t::make(sys, n, input);
},
"cell"_a, "name"_a, "inputs"_a, py::return_value_policy::reference,
py::keep_alive<1, 0>())
.def("add_pixel",
[](Mat_t & mat, Ccoord_t<dim> pix) { mat.add_pixel(pix); },
"pixel"_a)
.def("add_pixel_split",
[](Mat_t & mat, Ccoord_t<dim> pix, Real ratio) {
mat.add_pixel_split(pix, ratio);
},
"pixel"_a, "ratio"_a)
.def("size", &Mat_t::size);
}
/**
* python binding for the optionally objective form of Anisotropic material
*/
template <Dim_t dim>
void add_material_orthotropic_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialOrthotropic_" << dim << 'd';
const auto name{name_stream.str()};
using Mat_t = MaterialOrthotropic<dim, dim>;
using Sys_t = CellBase<dim, dim>;
using MatAniso_t = MaterialAnisotropic<dim, dim>;
// using MatBase_t = MaterialBase<dim,dim>;
py::class_<Mat_t, MatAniso_t>(mod, name.c_str())
.def_static(
"make",
[](Sys_t & sys, std::string n, std::vector<Real> input) -> Mat_t & {
return Mat_t::make(sys, n, input);
},
"cell"_a, "name"_a, "inputs"_a, py::return_value_policy::reference,
py::keep_alive<1, 0>())
.def("add_pixel",
[](Mat_t & mat, Ccoord_t<dim> pix) { mat.add_pixel(pix); },
"pixel"_a)
.def("add_pixel_split",
[](Mat_t & mat, Ccoord_t<dim> pix, Real ratio) {
mat.add_pixel_split(pix, ratio);
},
"pixel"_a, "ratio"_a)
.def("size", &Mat_t::size);
}
/**
* python binding for the optionally objective form of Hooke's law
*/
template <Dim_t dim>
void add_material_linear_elastic1_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialLinearElastic1_" << dim << 'd';
const auto name{name_stream.str()};
using Mat_t = MaterialLinearElastic1<dim, dim>;
using Sys_t = CellBase<dim, dim>;
py::class_<Mat_t, MaterialBase<dim, dim>>(mod, name.c_str())
.def_static("make",
[](Sys_t & sys, std::string n, Real e, Real p) -> Mat_t & {
return Mat_t::make(sys, n, e, p);
},
"cell"_a, "name"_a, "Young"_a, "Poisson"_a,
py::return_value_policy::reference, py::keep_alive<1, 0>())
.def("add_pixel",
[](Mat_t & mat, Ccoord_t<dim> pix) { mat.add_pixel(pix); },
"pixel"_a)
.def("add_pixel_split",
[](Mat_t & mat, Ccoord_t<dim> pix, Real ratio) {
mat.add_pixel_split(pix, ratio);
},
"pixel"_a, "ratio"_a)
.def("size", &Mat_t::size);
}
template <Dim_t dim>
void add_material_linear_elastic2_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialLinearElastic2_" << dim << 'd';
const auto name{name_stream.str()};
using Mat_t = MaterialLinearElastic2<dim, dim>;
using Sys_t = CellBase<dim, dim>;
py::class_<Mat_t, MaterialBase<dim, dim>>(mod, name.c_str())
.def_static("make",
[](Sys_t & sys, std::string n, Real e, Real p) -> Mat_t & {
return Mat_t::make(sys, n, e, p);
},
"cell"_a, "name"_a, "Young"_a, "Poisson"_a,
py::return_value_policy::reference, py::keep_alive<1, 0>())
.def("add_pixel",
[](Mat_t & mat, Ccoord_t<dim> pix,
py::EigenDRef<Eigen::ArrayXXd> & eig) {
Eigen::Matrix<Real, dim, dim> eig_strain{eig};
mat.add_pixel(pix, eig_strain);
},
"pixel"_a, "eigenstrain"_a)
.def("add_pixel_split",
[](Mat_t & mat, Ccoord_t<dim> pix, Real ratio,
py::EigenDRef<Eigen::ArrayXXd> & eig) {
Eigen::Matrix<Real, dim, dim> eig_strain{eig};
mat.add_pixel_split(pix, ratio, eig_strain);
},
"pixel"_a, "ratio"_a, "eigenstrain"_a)
.def("size", &Mat_t::size);
}
template <Dim_t dim>
void add_material_linear_elastic3_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialLinearElastic3_" << dim << 'd';
const auto name{name_stream.str()};
using Mat_t = MaterialLinearElastic3<dim, dim>;
using Sys_t = CellBase<dim, dim>;
py::class_<Mat_t, MaterialBase<dim, dim>>(mod, name.c_str())
.def(py::init<std::string>(), "name"_a)
.def_static("make",
[](Sys_t & sys, std::string n) -> Mat_t & {
return Mat_t::make(sys, n);
},
"cell"_a, "name"_a, py::return_value_policy::reference,
py::keep_alive<1, 0>())
.def("add_pixel",
[](Mat_t & mat, Ccoord_t<dim> pix, Real Young, Real Poisson) {
mat.add_pixel(pix, Young, Poisson);
},
"pixel"_a, "Young"_a, "Poisson"_a)
.def(
"add_pixel_split",
[](Mat_t & mat, Ccoord_t<dim> pix, Real ratio, Real Young,
Real Poisson) { mat.add_pixel_split(pix, ratio, Young, Poisson); },
"pixel"_a, "ratio"_a, "Young"_a, "Poisson"_a)
.def("size", &Mat_t::size);
}
template <Dim_t dim>
void add_material_linear_elastic4_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialLinearElastic4_" << dim << 'd';
const auto name{name_stream.str()};
using Mat_t = MaterialLinearElastic4<dim, dim>;
using Sys_t = CellBase<dim, dim>;
py::class_<Mat_t, MaterialBase<dim, dim>>(mod, name.c_str())
.def(py::init<std::string>(), "name"_a)
.def_static("make",
[](Sys_t & sys, std::string n) -> Mat_t & {
return Mat_t::make(sys, n);
},
"cell"_a, "name"_a, py::return_value_policy::reference,
py::keep_alive<1, 0>())
.def("add_pixel",
[](Mat_t & mat, Ccoord_t<dim> pix, Real Young, Real Poisson) {
mat.add_pixel(pix, Young, Poisson);
},
"pixel"_a, "Young"_a, "Poisson"_a)
.def(
"add_pixel_split",
[](Mat_t & mat, Ccoord_t<dim> pix, Real ratio, Real Young,
Real Poisson) { mat.add_pixel_split(pix, ratio, Young, Poisson); },
"pixel"_a, "ratio"_a, "Young"_a, "Poisson"_a)
.def("size", &Mat_t::size);
}
template <Dim_t Dim>
class PyMaterialBase : public MaterialBase<Dim, Dim> {
public:
/* Inherit the constructors */
using Parent = MaterialBase<Dim, Dim>;
using Parent::Parent;
/* Trampoline (need one for each virtual function) */
void save_history_variables() override {
PYBIND11_OVERLOAD_PURE(void, /* Return type */
Parent, /* Parent class */
save_history_variables /* Name of function in C++
(must match Python name) */
);
}
/* Trampoline (need one for each virtual function) */
void initialise() override {
PYBIND11_OVERLOAD_PURE(
void, /* Return type */
Parent, /* Parent class */
initialise /* Name of function in C++ (must match Python name) */
);
}
virtual void compute_stresses(const typename Parent::StrainField_t & F,
typename Parent::StressField_t & P,
Formulation form) override {
PYBIND11_OVERLOAD_PURE(
void, /* Return type */
Parent, /* Parent class */
compute_stresses, /* Name of function in C++ (must match Python name) */
F, P, form);
}
virtual void
compute_stresses_tangent(const typename Parent::StrainField_t & F,
typename Parent::StressField_t & P,
typename Parent::TangentField_t & K,
Formulation form) override {
PYBIND11_OVERLOAD_PURE(
void, /* Return type */
Parent, /* Parent class */
compute_stresses_tangent, /* Name of function in C++ (must match Python
name) */
F, P, K, form);
}
};
template <Dim_t dim>
void add_material_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "Material_" << dim << 'd';
const std::string name{name_stream.str()};
using Mat_t = MaterialBase<dim, dim>;
using FC_t = LocalFieldCollection<dim>;
using FCBase_t = FieldCollectionBase<dim, FC_t>;
py::class_<Mat_t>(mod, name.c_str())
.def_property_readonly("collection",
[](Mat_t & material) -> FCBase_t & {
return material.get_collection();
},
"returns the field collection containing internal "
"fields of this material",
py::return_value_policy::reference_internal);
// add_material_base_helper<dim>(mod);
add_material_anisotropic_helper<dim>(mod);
add_material_orthotropic_helper<dim>(mod);
add_material_linear_elastic1_helper<dim>(mod);
add_material_linear_elastic2_helper<dim>(mod);
add_material_linear_elastic3_helper<dim>(mod);
add_material_linear_elastic4_helper<dim>(mod);
}
void add_material(py::module & mod) {
auto material{mod.def_submodule("material")};
material.doc() = "bindings for constitutive laws";
add_material_helper<twoD>(material);
add_material_helper<threeD>(material);
}

Event Timeline