Page MenuHomec4science

bind_py_material.cc
No OneTemporary

File Metadata

Created
Wed, May 8, 01:39

bind_py_material.cc

/**
* @file bind_py_material.cc
*
* @author Till Junge <till.junge@epfl.ch>
*
* @date 09 Jan 2018
*
* @brief python bindings for µSpectre's materials
*
* Copyright © 2018 Till Junge
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with µSpectre; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* * Boston, MA 02111-1307, USA.
*
* Additional permission under GNU GPL version 3 section 7
*
* If you modify this Program, or any covered work, by linking or combining it
* with proprietary FFT implementations or numerical libraries, containing parts
* covered by the terms of those libraries' licenses, the licensors of this
* Program grant you additional permission to convey the resulting work.
*/
#include "common/common.hh"
#include "materials/material_base.hh"
#include "materials/material_evaluator.hh"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/eigen.h>
#include <sstream>
#include <string>
using muSpectre::Dim_t;
using muSpectre::Real;
using pybind11::literals::operator""_a;
namespace py = pybind11;
/* ---------------------------------------------------------------------- */
template <Dim_t Dim>
void add_material_linear_elastic_generic1_helper(py::module & mod);
/* ---------------------------------------------------------------------- */
template <Dim_t Dim>
void add_material_linear_elastic_generic2_helper(py::module & mod);
/**
* python binding for the optionally objective form of Hooke's law
*/
template <Dim_t Dim>
void add_material_linear_elastic1_helper(py::module & mod);
template <Dim_t Dim>
void add_material_linear_elastic2_helper(py::module & mod);
template <Dim_t Dim>
void add_material_linear_elastic3_helper(py::module & mod);
template <Dim_t Dim>
void add_material_linear_elastic4_helper(py::module & mod);
template <Dim_t Dim>
void add_material_hyper_elasto_plastic1_helper(py::module & mod);
/* ---------------------------------------------------------------------- */
template <Dim_t Dim>
class PyMaterialBase : public muSpectre::MaterialBase<Dim, Dim> {
public:
/* Inherit the constructors */
using Parent = muSpectre::MaterialBase<Dim, Dim>;
using Parent::Parent;
/* Trampoline (need one for each virtual function) */
void save_history_variables() override {
PYBIND11_OVERLOAD_PURE(void, // Return type
Parent, // Parent class
save_history_variables); // Name of function in C++
// (must match Python name)
}
/* Trampoline (need one for each virtual function) */
void initialise() override {
PYBIND11_OVERLOAD_PURE(
void, // Return type
Parent, // Parent class
initialise); // Name of function in C++ (must match Python name)
}
void compute_stresses(const typename Parent::StrainField_t & F,
typename Parent::StressField_t & P,
muSpectre::Formulation form) override {
PYBIND11_OVERLOAD_PURE(
void, // Return type
Parent, // Parent class
compute_stresses, // Name of function in C++ (must match Python name)
F, P, form);
}
void compute_stresses_tangent(const typename Parent::StrainField_t & F,
typename Parent::StressField_t & P,
typename Parent::TangentField_t & K,
muSpectre::Formulation form) override {
PYBIND11_OVERLOAD_PURE(
void, /* Return type */
Parent, /* Parent class */
compute_stresses, /* Name of function in C++ (must match Python name) */
F, P, K, form);
}
};
template <Dim_t Dim>
void add_material_evaluator(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialEvaluator_" << Dim << "d";
std::string name{name_stream.str()};
using MatEval_t = muSpectre::MaterialEvaluator<Dim>;
py::class_<MatEval_t>(mod, name.c_str())
.def(py::init<std::shared_ptr<muSpectre::MaterialBase<Dim, Dim>>>())
.def("save_history_variables", &MatEval_t::save_history_variables,
"for materials with state variables")
.def("evaluate_stress",
[](MatEval_t & mateval, py::EigenDRef<Eigen::MatrixXd> & grad,
muSpectre::Formulation form) {
if ((grad.cols() != Dim) or (grad.rows() != Dim)) {
std::stringstream err{};
err << "need matrix of shape (" << Dim << "×" << Dim
<< ") but got (" << grad.rows() << "×"
<< grad.cols() << ").";
throw std::runtime_error(err.str());
}
return mateval.evaluate_stress(grad, form);
},
"strain"_a, "formulation"_a,
"Evaluates stress for a given strain and formulation "
"(Piola-Kirchhoff 1 stress as a function of the placement gradient "
"P = P(F) for formulation=Formulation.finite_strain and Cauchy "
"stress as a function of the infinitesimal strain tensor σ = σ(ε) "
"for formulation=Formulation.small_strain)")
.def("evaluate_stress_tangent",
[](MatEval_t & mateval, py::EigenDRef<Eigen::MatrixXd> & grad,
muSpectre::Formulation form) {
if ((grad.cols() != Dim) or (grad.rows() != Dim)) {
std::stringstream err{};
err << "need matrix of shape (" << Dim << "×" << Dim
<< ") but got (" << grad.rows() << "×"
<< grad.cols() << ").";
throw std::runtime_error(err.str());
}
return mateval.evaluate_stress_tangent(grad, form);
},
"strain"_a, "formulation"_a,
"Evaluates stress and tangent moduli for a given strain and "
"formulation (Piola-Kirchhoff 1 stress as a function of the "
"placement gradient P = P(F) for "
"formulation=Formulation.finite_strain and Cauchy stress as a "
"function of the infinitesimal strain tensor σ = σ(ε) for "
"formulation=Formulation.small_strain). The tangent moduli are K = "
"∂P/∂F for formulation=Formulation.finite_strain and C = ∂σ/∂ε for "
"formulation=Formulation.small_strain.")
.def("estimate_tangent",
[](MatEval_t & evaluator, py::EigenDRef<Eigen::MatrixXd> & grad,
muSpectre::Formulation form, const Real step,
const muSpectre::FiniteDiff diff_type) {
if ((grad.cols() != Dim) or (grad.rows() != Dim)) {
std::stringstream err{};
err << "need matrix of shape (" << Dim << "×" << Dim
<< ") but got (" << grad.rows() << "×"
<< grad.cols() << ").";
throw std::runtime_error(err.str());
}
return evaluator.estimate_tangent(grad, form, step, diff_type);
},
"strain"_a, "formulation"_a, "Delta_x"_a,
"difference_type"_a = muSpectre::FiniteDiff::centred,
"Numerical estimate of the tangent modulus using finite "
"differences. The finite difference scheme as well as the finite "
"step size can be chosen. If there are no special circumstances, "
"the default scheme of centred finite differences yields the most "
"accurate results at an increased computational cost.");
}
template <Dim_t Dim>
void add_material_helper(py::module & mod) {
std::stringstream name_stream{};
name_stream << "MaterialBase_" << Dim << "d";
std::string name{name_stream.str()};
using Material = muSpectre::MaterialBase<Dim, Dim>;
using MaterialTrampoline = PyMaterialBase<Dim>;
using FC_t = muSpectre::LocalFieldCollection<Dim>;
using FCBase_t = muSpectre::FieldCollectionBase<Dim, FC_t>;
py::class_<Material, MaterialTrampoline /* <--- trampoline*/,
std::shared_ptr<Material>>(mod,
name.c_str())
.def(py::init<std::string>())
.def("save_history_variables", &Material::save_history_variables)
.def("list_fields", &Material::list_fields)
.def("get_real_field", &Material::get_real_field, "field_name"_a,
py::return_value_policy::reference_internal)
.def("size", &Material::size)
.def("add_pixel",
[](Material & mat, muSpectre::Ccoord_t<Dim> pix) {
mat.add_pixel(pix);
},
"pixel"_a)
.def_property_readonly("collection",
[](Material & material) -> FCBase_t & {
return material.get_collection();
},
"returns the field collection containing internal "
"fields of this material");
add_material_linear_elastic1_helper<Dim>(mod);
add_material_linear_elastic2_helper<Dim>(mod);
add_material_linear_elastic3_helper<Dim>(mod);
add_material_linear_elastic4_helper<Dim>(mod);
add_material_hyper_elasto_plastic1_helper<Dim>(mod);
add_material_linear_elastic_generic1_helper<Dim>(mod);
add_material_linear_elastic_generic2_helper<Dim>(mod);
add_material_evaluator<Dim>(mod);
}
void add_material(py::module & mod) {
auto material{mod.def_submodule("material")};
material.doc() = "bindings for constitutive laws";
add_material_helper<muSpectre::twoD>(material);
add_material_helper<muSpectre::threeD>(material);
}

Event Timeline