

CS-307 FALL’20 – ASSIGNMENT 1 1

Assignment 1

Objectives

This assignment is an introduction to parallel programming in lower-level languages and is
intended to expose you to reasoning about the parallel and sequential fractions of a program. In
this assignment, we will implement a simple program for Monte-Carlo integration, parallelize it
with a framework called OpenMP, and perform simple calculations to quantify the limits of
parallel programming in this fashion.

Background

Monte-Carlo Integration (MCI) is a technique for numerical integration that approximates the
area underneath a curve with a non-deterministic approach. Figure 1 shows an example.

First, we pick an area that is strictly larger than the target integral (in Figure 1, this area is the unit
square, bounded by the lines x=1 and y=1). Then, we randomly generate a number of points
inside the domain of integration and calculate whether or not each point resides in the target
area (1/4 of the unit circle) or the background area (the square). Therefore, the fraction of points
inside the targeted area (in blue) to the total number of points (blue and orange), represents the
area of the quarter-circle.

Figure 1 - Monte Carlo Integration for the Unit Circle

Assignment - Part 1

In Figure 1, we can compute an approximation of the constant 𝜋, by comparing the ratio of areas
between the quarter-circle and the unit square, to the fraction of points that we calculated are
inside the quarter-circle. Equation 1 computes an approximation of 𝜋, assuming the ratio of
points in the quarter-circle to the total number of points is 4/5.

CS-307 FALL’20 – ASSIGNMENT 1 2

𝐴𝑐
𝑆⁄ ≈

1
4𝜋𝑟2

𝑆
≈ 𝜋

4⁄ ≈ 4
5⁄ ; 𝜋 ≈

16

5

Equation 1 - Approximation of Pi. Ac is the area of the circle, S is the total area in which points were sampled, r is the circle radius

For the first part of the assignment, you write a parallel program to approximate 𝜋, following the
steps below:

• Read the number of threads and the number of random samples to take from command
line parameters.

• Use OpenMP to sample the points and calculate, in parallel, the total number of points
that fall inside the quarter-circle as described above.

• Print the computed value of 𝜋 and the running time of your program to the standard
output.

We will be testing your program’s correctness with automated infrastructure, so it must comply
to both the input and output specifications of our test program, which are:

1. The compiled binary must be called pi.
2. The first argument is the number of threads to use, and the second argument is the

number of points to generate.
3. Your program must print exactly the sample output shown below. If it does not, you will

receive no marks for the correctness portion of the assignment.

Development Infrastructure

Along with this file, in the tarball A1.tgz,we have provided the following files:

• pi.c - which contains a skeleton of how you should structure your program

• utility.h – which contains useful functions such as a random number generator, and
a timer that measures the time elapsed since the call to set_clock()

• Makefile – which compiles your program using the current version of gcc

Important: If you are working on an operating system that is non-Linux, you will need to take
some extra steps to make your system work with OpenMP. On macOS, you can use Homebrew1
to install the latest version of gcc-7, and then modify the Makefile to read:

1 https://brew.sh

/bin/bash

$./pi 4 500000

- Using 4 threads: pi = 3.1416045 computed in 0.405s.

CC = gcc-7

https://brew.sh/

CS-307 FALL’20 – ASSIGNMENT 1 3

On Windows, you have several options. You can either use Cygwin to install a –Nix like
environment on your computer or use the VirtualBox VM image EPFL provides as a workspace2
in which to perform your development.

Assignment - Part 2

In this part, you are going to extend the first program to provide a basic numerical integration
function for arbitrary functions using MCI. The MCI algorithm to integrate any general function
f(), on the domain [a,b] is slightly different. As we don’t know the range of f()on [a,b] a priori,
and thus cannot simply bound it by a square as we did in Part 1, we leverage a well-known
approximation from calculus. Say that we generate one pair (x,f(x)) and the area of the
rectangle with height f(x) and width a-b. We have just generated a rough approximation of
the area under the curve, albeit a very poor one. However, Figure 2 shows how in the limit, the
average area of a large number of randomly generated rectangles converges to the actual integral
of f().3

Figure 2 - MCI As a Limit of Rectangular Areas

Part 2 of the assignment requires you to implement this type of MCI using an arbitrary function
as well as an arbitrary domain. For this part of the assignment, your code should be placed in the
file integral.c, which has the same basic structure as pi.c. Instead of embedding the
function to be integrated into the program (𝑥2 + 𝑦2 = 1 in the first part), you need to update
your program to operate with an abstract call to a function f(), which is defined in an external
file. Additionally, the domain [a,b] must be passed to your code at invocation time. In order to
test your code, you can make up your own definition of f(). Our tester will define the function
in a file called function.c, so please name your test files accordingly.

In the file integral.c, please write the function:
integrate(int num_threads,int samples,int a,int b, double (*f)(double))

2 https://support.epfl.ch/kb_view.do?sysparm_article=KB0012496#aDownloadtheimageofthevirtualmachinerooms-jzxa
3 For more details on this you can visit https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-

graphics/monte-carlo-methods-in-practice/monte-carlo-integration.

https://support.epfl.ch/kb_view.do?sysparm_article=KB0012496#aDownloadtheimageofthevirtualmachinerooms-jzxa

CS-307 FALL’20 – ASSIGNMENT 1 4

The arguments represent:

• num_threads – the number of threads to use

• samples – the number of total samples to evaluate

• a,b – the domain of integration

• f – a function pointer that takes in a double x and returns f(x)

Your program must format its output exactly as follows:

Deliverables

You need to turn in the following things for this assignment:

1. Completed code for pi.c and integral.c. Remember to check if your code complies

to the format expected by the automated tester, otherwise you will receive no points for
correctness!

2. A report that answers the questions listed below. The report name should be
a1_GROUPID.pdf

To submit your code and your report, create a tarball archive (this is the only accepted format!)
called a1_GROUPID.tgz and upload it on Moodle4.

Report

In the report, we expect you to perform three tasks:

1- Describe the algorithm that was implemented. Identify:
a. Which parts of the program you parallelized and why. If the algorithm has several

phases (parallel phases followed by serial phases), identify each of them.
b. Identify the operations that dominate the execution time of each program phase.

You should pick a single type of operation per phase. (i.e. If you believe that your
program spends most of its time performing multiplications, then that operation
is multiplication).

c. For each phase, identify the program arguments that affect the number of
performance-critical operations in each phase and provide the asymptotic
execution time of the program in the big O notation.

4 If you don’t know how, look online for a guide like this one: https://www.howtogeek.com/248780/how-to-compress-and-

extract-files-using-the-tar-command-on-linux/

/bin/bash

$./integral 4 2000 5 9

- Using 4 threads: integral on [5,9] = 4.1416045 computed in 0.405s.

CS-307 FALL’20 – ASSIGNMENT 1 5

d. Estimate the speedup of the multithreaded program over the single threaded
version of it, using thread counts equal to {1, 2, 4, 8, 16, 32, 48, 64} and draw a
graph showing how the execution time scales with the number threads. Ignore
any hardware limitations in your estimation.

2- In a table, present the execution times and speedups over the single threaded version
you measured for the same thread counts as in 1d. Then add these results to the previous
graph to see how your prediction matches with the actual execution times.

3- Compare the speedups you measured to what you predicted in Task 1. If they are
different, why?

The report should be as precise as possible, addressing the three questions above. Keep the
descriptions of the algorithm implemented and of your reasoning in parallelizing the program
short. A regular report should not be much longer than 2 pages.

Grading

The code will be graded automatically by a script and checked for plagiarism. The script will check
how the running time scales with number of threads and if the results returned are consistent
with what was expected. Plagiarized code will receive 0. We will escalate plagiarism cases to the
student section.

The reports will be read and graded by humans and checked for plagiarism automatically.

The grade breakdown is as follows:

• Correctness: 50%

• Report: 50%

	Objectives
	Background
	Assignment - Part 1
	Development Infrastructure

	Assignment - Part 2
	Deliverables
	Report
	Grading

