
Monte Carlo Integration with OpenMP

Raffaele Ancarola, Louis Jaugey
raffaele.ancarola@epfl.ch, louis.jaugey@epfl.ch

October 6, 2020

1 Introduction

In this paper, we will use Monte-Carlo method to first calculate an approximation
of π and then, to develop a general integrator for one dimensional functions. The
computation will be executed in parallel on the CPU, using OpenMP API. The
performance changes resulting from the number of threads/cores used will be studied
and discussed.

2 Method

As explained above, the Monte-Carlo method is used to approximate the expected
result. The main idea behind this numerical method is to generate many random
sample numbers which are then used for the approximation.

Approximation of π To calculate π, one can generate random floating point
values x and y between 0 and 1. If the Euclidean distance d = ‖x2 + y2‖ is smaller
than one, then the point is inside the circle. Let C be the number of point in the
circle and T the total of points. Then,

π ≈ 4C

T
(1)

where the factor 4 comes from the fact that we approximate only the area of a
quarter of a circle.

Approximation of a 1D integral The integral of a general function can be
(badly) approximated by ∫ a

b

f(x)dx ≈ (b− a)f(x) (2)

1

mailto:raffaele.ancarola@epfl.ch
mailto:louis.jaugey@epfl.ch


Though this is a bad approximation, the average of these values over randomly
generate x’s can be good and this what will be used for the final approximation.

Parallelisation For both of these computations, the random floating point vari-
ables used to compute one step of the approximation are generated in for loops.
The result of the step is added to a general variable that we will call C. In order to
take advantage of the multiple threads, the for loop is split in ntr sub-loops, each
executed in one of the ntr threads. The sub-loops’ iterator is initialised to the thread
id (between 0 and ntr − 1) and is incremented by ntr at each iteration. If C is kept
as a shared variable, it will encounter race conditions between threads. A possible
solution would be to increment C atomically, however this slows the execution down.
The solution used here is to have a Cp which is private to each thread and a shared
Cs in which the Cp’s are combined, atomically.

Performance The operations dom-
inating the execution time are clearly
the parallelised for loop block (that
we call for_loop phase) and the com-
putation of the sum of each thread
contribution (final_count phase).
Both phases are present in pi.c and
integral.c.
The final_count phase takes non-
negligible execution time because, al-
though it’s performed at the end of
every separate thread, it involves syn-
chronization, meaning that it is exe-
cuted only once all threads are done.
In for_loop, a set of constant time
operations are executed N times. Di-
viding the task execution in ntr in-
dependent threads reduces the time
complexity to Θ(N/ntr).
The initialization phase, for large N ,
can be neglected.

0 10 20 30 40 50 60

0

5

10

15

20

25

Number of threads ntr

Sp
ee

d-
up

S

Estimated
pi.c

integral.c

Figure 1: Speed-up as function of the number of run-
ning threads Ntr evaluated for the theoretical case, the
program pi.c and the program integral.c. Both are
computed on the scitas EPFL cluster [1] using an
sbatch reservation task.

Parallelisation speedup The only part of the program which can be sped up is
for_loop. Let p be the fraction of the total execution time spent on the for_loop
phase. The total execution time depends on the number of samples N and an
additional synchronisation time of final_count. This phase is supposed to be linear
with respect to nth and is proportional to β ·(nth−1), where β is the proportionality
coefficient, called the waiting factor. Hence, p can be estimated by:

2



p(ntr, N) =
N

β · (ntr − 1) +N
(3)

Using then the Amdahl’s law and considering that for_loop can be speed-up of
ntr times, we are able to retreive the total speed-up:

S =
1

1− p+ p
ntr

(4)

The graph in figure 1 and the table 1 show that the speed-up obtained running
the programs on the scitas EPFL cluster, is well described by the Amdahl’s law
and the estimation of the theoretical case is well chosen. Furthermore, it comes out
that β ≈ 50000.

pi.c integral.c
Ntr T [s] S T [s] S
1 2.14± 0.02 1 1.06± 0.01 1
2 1.09± 0.05 1.96918 0.532± 0.001 1.99839
4 0.534± 0.010 4.00415 0.267± 0.002 3.98269
8 0.267± 0.001 7.99782 0.134± 0.001 7.94212
16 0.136± 0.005 15.6962 0.0676± 0.0005 15.7183
32 0.114± 0.005 18.8279 0.0604± 0.0051 17.5911
48 0.103± 0.009 20.7175 0.0589± 0.0062 18.0524
64 0.105± 0.009 20.3829 0.0552± 0.0026 19.2437

Table 1: Results of elapsed time T and speed-up S as function of the number of run-
ning threads nth evaluated on the scitas EPFL cluster. Times were taken evaluat-
ing the mean over 10 slurm outputs. NB: also S is subject to standard deviation but
it’s so small that it can be negletted. Sources: python script graphs/gengraphs.py
and slurms raw data in graphs/slurms/ (see [2]).

Documentation and sources

[1] https://scitas-data.epfl.ch/confluence/exportword?pageId=17564177

[2] https://c4science.ch/source/multiproc/browse/master/A1/

3

https://scitas-data.epfl.ch/confluence/exportword?pageId=17564177
https://c4science.ch/source/multiproc/browse/master/A1/

