
Chapter 1, Getting started

Programming Concepts in Scientific
Programming

EPFL, Master class

September 20, 2019



Class organization

I Teaching staff: G. Anciaux, L. Pegolotti, J. Koerfer

I Lectures: on Mondays, exercises on Fridays
I Follow chapters of the book: Guide To Scientific Computing in C++
I Permanent homework: reading next chapter of the book
I Moodle (password: PCSC2019): material, forum (at the beginning)
I Git: material, pdfs, solutions
I Evaluation: project realization and oral presentation

http://link.springer.com/book/10.1007/978-1-4471-2736-9


Class organization

I Teaching staff: G. Anciaux, L. Pegolotti, J. Koerfer
I Lectures: on Mondays, exercises on Fridays

I Follow chapters of the book: Guide To Scientific Computing in C++
I Permanent homework: reading next chapter of the book
I Moodle (password: PCSC2019): material, forum (at the beginning)
I Git: material, pdfs, solutions
I Evaluation: project realization and oral presentation

http://link.springer.com/book/10.1007/978-1-4471-2736-9


Class organization

I Teaching staff: G. Anciaux, L. Pegolotti, J. Koerfer
I Lectures: on Mondays, exercises on Fridays
I Follow chapters of the book: Guide To Scientific Computing in C++

I Permanent homework: reading next chapter of the book
I Moodle (password: PCSC2019): material, forum (at the beginning)
I Git: material, pdfs, solutions
I Evaluation: project realization and oral presentation

http://link.springer.com/book/10.1007/978-1-4471-2736-9


Class organization

I Teaching staff: G. Anciaux, L. Pegolotti, J. Koerfer
I Lectures: on Mondays, exercises on Fridays
I Follow chapters of the book: Guide To Scientific Computing in C++
I Permanent homework: reading next chapter of the book

I Moodle (password: PCSC2019): material, forum (at the beginning)
I Git: material, pdfs, solutions
I Evaluation: project realization and oral presentation

http://link.springer.com/book/10.1007/978-1-4471-2736-9


Class organization

I Teaching staff: G. Anciaux, L. Pegolotti, J. Koerfer
I Lectures: on Mondays, exercises on Fridays
I Follow chapters of the book: Guide To Scientific Computing in C++
I Permanent homework: reading next chapter of the book
I Moodle (password: PCSC2019): material, forum (at the beginning)

I Git: material, pdfs, solutions
I Evaluation: project realization and oral presentation

http://link.springer.com/book/10.1007/978-1-4471-2736-9


Class organization

I Teaching staff: G. Anciaux, L. Pegolotti, J. Koerfer
I Lectures: on Mondays, exercises on Fridays
I Follow chapters of the book: Guide To Scientific Computing in C++
I Permanent homework: reading next chapter of the book
I Moodle (password: PCSC2019): material, forum (at the beginning)
I Git: material, pdfs, solutions

I Evaluation: project realization and oral presentation

http://link.springer.com/book/10.1007/978-1-4471-2736-9


Class organization

I Teaching staff: G. Anciaux, L. Pegolotti, J. Koerfer
I Lectures: on Mondays, exercises on Fridays
I Follow chapters of the book: Guide To Scientific Computing in C++
I Permanent homework: reading next chapter of the book
I Moodle (password: PCSC2019): material, forum (at the beginning)
I Git: material, pdfs, solutions
I Evaluation: project realization and oral presentation

http://link.springer.com/book/10.1007/978-1-4471-2736-9


Today

I Introduction to class
I What is a computer ?
I What is a program ?
I Compilation
I Starting chapter 1, pp 1-7
I Tutorial on exercises/projects

I GNU-Linux
I Exercises Chap. 1



What is a computer ?



What is a computer ?



What is a program ?

Animation with 3 people
I One central memory
I One program memory
I One arithmetic logic unit

First program
*0 = 1
*1 = 2

Second program
1: *1 = (0)
2: *2 = (0)
3: *0 = (*1 >= 4)
4: if *0 goto 8:
5: *2 = (*2 + *1)
6: *1 = (*1 + 1)
7: goto 3
8: END



What is a program ?

Animation with 3 people
I One central memory
I One program memory
I One arithmetic logic unit

First program
*0 = 1
*1 = 2

Second program
1: *1 = (0)
2: *2 = (0)
3: *0 = (*1 >= 4)
4: if *0 goto 8:
5: *2 = (*2 + *1)
6: *1 = (*1 + 1)
7: goto 3
8: END



Turing machine
I A Turing machine is a theoretical device that manipulates symbols

contained on a strip of tape
I A computer is a form/implementation of a Turing machine
I Instructions are read sequentially
I Instructions are of the type:

I Memory access (moving, copying)
I Algebraic computation (add,sub,mult,div)



Compilation and linking

A compiler is a computer program that transforms source code written
in a programming/source language into a computer.

The GNU compiler (g++) is a C++ compiler
g++ -Wall -c source_file.cc

I This will produce an object source_file.o file
I "-c" requests for a compilation
I "-Wall" to output all warnings and errors



Link editor

Question:
What are the addresses when files are separated ?



Link editor

A linker or link editor is computer program
that
I takes one or more object files

(generated by a compiler)
I combines them into a single executable

program.

g++ object1.o object2.o object3.o -o exec



Programming languages

I Lowest level language is denoted as assembler. Processor
instructions are explicitly called. Instruction are simply coded and
address are translated.

I C language is a low level but is more generic and practical than
assembler. Pointer is an important concept of the addressing system
in C.

I FORTRAN is dedicated to scientific computing and vector
manipulation.

I C++ and java are object oriented programming languages.
I Perl, Python, sh (shell) are script (interpreted) languages that do

not need to be compiled.



Programming languages

I Lowest level language is denoted as assembler. Processor
instructions are explicitly called. Instruction are simply coded and
address are translated.

I C language is a low level but is more generic and practical than
assembler. Pointer is an important concept of the addressing system
in C.

I FORTRAN is dedicated to scientific computing and vector
manipulation.

I C++ and java are object oriented programming languages.
I Perl, Python, sh (shell) are script (interpreted) languages that do

not need to be compiled.



Programming languages

I Lowest level language is denoted as assembler. Processor
instructions are explicitly called. Instruction are simply coded and
address are translated.

I C language is a low level but is more generic and practical than
assembler. Pointer is an important concept of the addressing system
in C.

I FORTRAN is dedicated to scientific computing and vector
manipulation.

I C++ and java are object oriented programming languages.
I Perl, Python, sh (shell) are script (interpreted) languages that do

not need to be compiled.



Programming languages

I Lowest level language is denoted as assembler. Processor
instructions are explicitly called. Instruction are simply coded and
address are translated.

I C language is a low level but is more generic and practical than
assembler. Pointer is an important concept of the addressing system
in C.

I FORTRAN is dedicated to scientific computing and vector
manipulation.

I C++ and java are object oriented programming languages.
I Perl, Python, sh (shell) are script (interpreted) languages that do

not need to be compiled.



Programming languages

I Lowest level language is denoted as assembler. Processor
instructions are explicitly called. Instruction are simply coded and
address are translated.

I C language is a low level but is more generic and practical than
assembler. Pointer is an important concept of the addressing system
in C.

I FORTRAN is dedicated to scientific computing and vector
manipulation.

I C++ and java are object oriented programming languages.

I Perl, Python, sh (shell) are script (interpreted) languages that do
not need to be compiled.



Programming languages

I Lowest level language is denoted as assembler. Processor
instructions are explicitly called. Instruction are simply coded and
address are translated.

I C language is a low level but is more generic and practical than
assembler. Pointer is an important concept of the addressing system
in C.

I FORTRAN is dedicated to scientific computing and vector
manipulation.

I C++ and java are object oriented programming languages.
I Perl, Python, sh (shell) are script (interpreted) languages that do

not need to be compiled.



Brief Introduction to C++
Object Oriented Language, including:

I Modularity: class data and related operations can be worked on
independently;

I Abstraction: features and functionality of a class are exposed (public
members and methods in .hpp);

I Encapsulation: implementation is hidden (.cpp);
I Extensibility: functionality can be reused with selected parts

extended;
I Polymorphism: The same code can be used for a variety of objects;
I Inheritance: allows for code reuse, extensibility and polymorphism.

Why C++?

Object Oriented, Fast, large number of tested and optimized numerical
libraries, wide range of compilers (open source and commercial), flexible
memory management model.



Brief Introduction to C++
Object Oriented Language, including:
I Modularity: class data and related operations can be worked on

independently;

I Abstraction: features and functionality of a class are exposed (public
members and methods in .hpp);

I Encapsulation: implementation is hidden (.cpp);
I Extensibility: functionality can be reused with selected parts

extended;
I Polymorphism: The same code can be used for a variety of objects;
I Inheritance: allows for code reuse, extensibility and polymorphism.

Why C++?

Object Oriented, Fast, large number of tested and optimized numerical
libraries, wide range of compilers (open source and commercial), flexible
memory management model.



Brief Introduction to C++
Object Oriented Language, including:
I Modularity: class data and related operations can be worked on

independently;
I Abstraction: features and functionality of a class are exposed (public

members and methods in .hpp);

I Encapsulation: implementation is hidden (.cpp);
I Extensibility: functionality can be reused with selected parts

extended;
I Polymorphism: The same code can be used for a variety of objects;
I Inheritance: allows for code reuse, extensibility and polymorphism.

Why C++?

Object Oriented, Fast, large number of tested and optimized numerical
libraries, wide range of compilers (open source and commercial), flexible
memory management model.



Brief Introduction to C++
Object Oriented Language, including:
I Modularity: class data and related operations can be worked on

independently;
I Abstraction: features and functionality of a class are exposed (public

members and methods in .hpp);
I Encapsulation: implementation is hidden (.cpp);

I Extensibility: functionality can be reused with selected parts
extended;

I Polymorphism: The same code can be used for a variety of objects;
I Inheritance: allows for code reuse, extensibility and polymorphism.

Why C++?

Object Oriented, Fast, large number of tested and optimized numerical
libraries, wide range of compilers (open source and commercial), flexible
memory management model.



Brief Introduction to C++
Object Oriented Language, including:
I Modularity: class data and related operations can be worked on

independently;
I Abstraction: features and functionality of a class are exposed (public

members and methods in .hpp);
I Encapsulation: implementation is hidden (.cpp);
I Extensibility: functionality can be reused with selected parts

extended;

I Polymorphism: The same code can be used for a variety of objects;
I Inheritance: allows for code reuse, extensibility and polymorphism.

Why C++?

Object Oriented, Fast, large number of tested and optimized numerical
libraries, wide range of compilers (open source and commercial), flexible
memory management model.



Brief Introduction to C++
Object Oriented Language, including:
I Modularity: class data and related operations can be worked on

independently;
I Abstraction: features and functionality of a class are exposed (public

members and methods in .hpp);
I Encapsulation: implementation is hidden (.cpp);
I Extensibility: functionality can be reused with selected parts

extended;
I Polymorphism: The same code can be used for a variety of objects;

I Inheritance: allows for code reuse, extensibility and polymorphism.

Why C++?

Object Oriented, Fast, large number of tested and optimized numerical
libraries, wide range of compilers (open source and commercial), flexible
memory management model.



Brief Introduction to C++
Object Oriented Language, including:
I Modularity: class data and related operations can be worked on

independently;
I Abstraction: features and functionality of a class are exposed (public

members and methods in .hpp);
I Encapsulation: implementation is hidden (.cpp);
I Extensibility: functionality can be reused with selected parts

extended;
I Polymorphism: The same code can be used for a variety of objects;
I Inheritance: allows for code reuse, extensibility and polymorphism.

Why C++?

Object Oriented, Fast, large number of tested and optimized numerical
libraries, wide range of compilers (open source and commercial), flexible
memory management model.



Brief Introduction to C++
Object Oriented Language, including:
I Modularity: class data and related operations can be worked on

independently;
I Abstraction: features and functionality of a class are exposed (public

members and methods in .hpp);
I Encapsulation: implementation is hidden (.cpp);
I Extensibility: functionality can be reused with selected parts

extended;
I Polymorphism: The same code can be used for a variety of objects;
I Inheritance: allows for code reuse, extensibility and polymorphism.

Why C++?

Object Oriented, Fast, large number of tested and optimized numerical
libraries, wide range of compilers (open source and commercial), flexible
memory management model.



A first C++ Program

Open the file ’hello.cpp’



A first C++ Program
1 #include <iostream>
2

3 int main(int argc, char *argv[]) {
4 /* This is a comment and will be ignored by the compiler
5 Comments are useful to explain in English what
6 the program does */
7

8 // Print "Hello World" to the screen
9 std::cout << "Hello World\n";

10 return 0;
11 }

Key points:

I instruction: line ending with ;
I the includes
I the main function
I the block
I comments



A first C++ Program
1 #include <iostream>
2

3 int main(int argc, char *argv[]) {
4 /* This is a comment and will be ignored by the compiler
5 Comments are useful to explain in English what
6 the program does */
7

8 // Print "Hello World" to the screen
9 std::cout << "Hello World\n";

10 return 0;
11 }

Key points:

I instruction: line ending with ;
I the includes
I the main function
I the block
I comments



A first C++ Program
1 #include <iostream>
2

3 int main(int argc, char *argv[]) {
4 /* This is a comment and will be ignored by the compiler
5 Comments are useful to explain in English what
6 the program does */
7

8 // Print "Hello World" to the screen
9 std::cout << "Hello World\n";

10 return 0;
11 }

Key points:

I instruction: line ending with ;
I the includes
I the main function
I the block
I comments



A first C++ Program
1 #include <iostream>
2

3 int main(int argc, char *argv[]) {
4 /* This is a comment and will be ignored by the compiler
5 Comments are useful to explain in English what
6 the program does */
7

8 // Print "Hello World" to the screen
9 std::cout << "Hello World\n";

10 return 0;
11 }
12

Key points:

I instruction: line ending with ;
I the includes
I the main function
I the block
I comments



A first C++ Program
1 #include <iostream>
2

3 int main(int argc, char *argv[]) {
4 /* This is a comment and will be ignored by the compiler
5 Comments are useful to explain in English what
6 the program does */
7

8 // Print "Hello World" to the screen
9 std::cout << "Hello World\n";

10 return 0;

11 }
Key points:

I instruction: line ending with ;
I the includes
I the main function
I the block
I comments



A first C++ Program
1 #include <iostream>
2

3 int main(int argc, char *argv[]) {
4 /* This is a comment and will be ignored by the compiler
5 Comments are useful to explain in English what
6 the program does */
7

8 // Print "Hello World" to the screen
9 std::cout << "Hello World\n";

10 return 0;
11 }
12

Key points:

I instruction: line ending with ;
I the includes
I the main function
I the block
I comments



A first C++ Program
1 # include <iostream>
2

3 int main(int argc, char *argv[]) {
4 /* This is a comment and will be ignored by the compiler
5 Comments are useful to explain in English what
6 the program does */
7

8 // Print "Hello World" to the screen
9 std::cout << "Hello World\n";

10 return 0;
11 }

Key points:

I instruction: line ending with ;
I the includes
I the main function
I the block
I comments



Compiling: Try it

g++ -Wall -o HelloWorld hello.cpp



C++ development

C and C++ are compiled languages. The workflow is:
I Edit source
I Compile
I Run program
I (Debug and go back to editing)



Compiling options

The basic command:
g++ -o HelloWorld HelloWorld.cpp

With warnings:
g++ -Wall -o HelloWorld HelloWorld.cpp

With optimization:
g++ -O -o HelloWorld HelloWorld.cpp

With debugging information:
g++ -g -o HelloWorld HelloWorld.cpp

When additional libraries are needed:
g++ -o HelloWorld HelloWorld.cpp -lm



C++ basics

Basic C++ syntax



Variables (File ’variable.cpp’)

3 int row, column;
4 double temperature;

5 row = 1;
6 column = 2;
7 temperature = 3.0;



Variables (File ’variable.cpp’)

3 int row, column;
4 double temperature;

5 row = 1;
6 column = 2;
7 temperature = 3.0;



Variables (File ’variable.cpp’)

9 double tolerance1 = 0.0001;
10 double tolerance2 = 1e-4;

Constant variable ?

12 const double density = 45.621;



Variables (File ’variable.cpp’)

9 double tolerance1 = 0.0001;
10 double tolerance2 = 1e-4;

Constant variable ?

12 const double density = 45.621;



Variables (File ’variable.cpp’)

Non signed numbers ?

18 signed long int integer4;
19 unsigned int integer5;

Large numbers ?

21 float x1;
22 double x2;
23 long double x3;



Variables (File ’variable.cpp’)

Non signed numbers ?

18 signed long int integer4;
19 unsigned int integer5;

Large numbers ?

21 float x1;
22 double x2;
23 long double x3;



Variables (File ’variable.cpp’)

Non signed numbers ?

18 signed long int integer4;
19 unsigned int integer5;

Large numbers ?

21 float x1;
22 double x2;
23 long double x3;



Variables (File ’variable.cpp’)

Non signed numbers ?

18 signed long int integer4;
19 unsigned int integer5;

Large numbers ?

21 float x1;
22 double x2;
23 long double x3;



Operations on numerical variables (File ’operations.cpp’)

3 int a = 5, b = 2, c;
4

5 c = a + b; // integer addition
6 c = a - b; // integer substraction
7 c = a * b; // integer multiplication
8 c = a / b; // integer division (careful!)
9 c = a % b; // modulo operation



Operations on numerical variables (File ’operations.cpp’)

3 int a = 5, b = 2, c;
4

5 c = a + b; // integer addition
6 c = a - b; // integer substraction
7 c = a * b; // integer multiplication
8 c = a / b; // integer division (careful!)
9 c = a % b; // modulo operation



Operations on numerical variables (File ’operations.cpp’)

3 int a = 5, b = 2, c;
4

5 c = a + b; // integer addition
6 c = a - b; // integer substraction
7 c = a * b; // integer multiplication

8 c = a / b; // integer division (careful!)

9 c = a % b; // modulo operation



Operations on numerical variables (File ’operations.cpp’)

11 double x = 1.0, y = 2.0, z;
12

13 z = (double)a / (double)b; // cast integer to a float
14

15 z = x / y; // floating point division
16 z = sqrt(x); // square root
17 z = exp(y); // exponential function
18 z = pow(x, y); // x to the power of y
19 z = M_PI; // z stores the value of pi



Arrays (File ’arrays.cpp’)

3 int array1[2];
4 double array2[2][3];



Arrays (File ’arrays.cpp’)

3 int array1[2];

4 double array2[2][3];



Arrays (File ’arrays.cpp’)

3 int array1[2];

4 double array2[2][3];



Arrays (File ’arrays.cpp’)

3 int array1[2];

6 array1[0] = 1;
7 array1[1] = 10;

4 double array2[2][3];

9 array2[0][0] = 6.4;
10 array2[0][1] = -3.1;
11 array2[0][2] = 55.0;
12 array2[1][0] = 63.0;
13 array2[1][1] = -100.9;
14 array2[1][2] = 50.8;

16 array2[1][2] = array2[0][1] + array2[1][0];

18 // Declaration and initialization
19 double array3[3] = {5.0, 1.0, 2.0};
20 int array4[2][3] = {{1, 6, -4}, {2, 2, 2}};



Arrays (File ’arrays.cpp’)

3 int array1[2];

6 array1[0] = 1;
7 array1[1] = 10;

4 double array2[2][3];

9 array2[0][0] = 6.4;
10 array2[0][1] = -3.1;
11 array2[0][2] = 55.0;
12 array2[1][0] = 63.0;
13 array2[1][1] = -100.9;
14 array2[1][2] = 50.8;

16 array2[1][2] = array2[0][1] + array2[1][0];

18 // Declaration and initialization
19 double array3[3] = {5.0, 1.0, 2.0};
20 int array4[2][3] = {{1, 6, -4}, {2, 2, 2}};



Arrays (File ’arrays.cpp’)

3 int array1[2];

6 array1[0] = 1;
7 array1[1] = 10;

4 double array2[2][3];

9 array2[0][0] = 6.4;
10 array2[0][1] = -3.1;
11 array2[0][2] = 55.0;
12 array2[1][0] = 63.0;
13 array2[1][1] = -100.9;
14 array2[1][2] = 50.8;

16 array2[1][2] = array2[0][1] + array2[1][0];

18 // Declaration and initialization
19 double array3[3] = {5.0, 1.0, 2.0};
20 int array4[2][3] = {{1, 6, -4}, {2, 2, 2}};



Arrays (File ’arrays.cpp’)

3 int array1[2];

6 array1[0] = 1;
7 array1[1] = 10;

4 double array2[2][3];

9 array2[0][0] = 6.4;
10 array2[0][1] = -3.1;
11 array2[0][2] = 55.0;
12 array2[1][0] = 63.0;
13 array2[1][1] = -100.9;
14 array2[1][2] = 50.8;

16 array2[1][2] = array2[0][1] + array2[1][0];

18 // Declaration and initialization
19 double array3[3] = {5.0, 1.0, 2.0};
20 int array4[2][3] = {{1, 6, -4}, {2, 2, 2}};



Arrays

How is the memory organized ?
4 double array2[2][3];



ASCII characters and boolean variables

ASCII characters (File ’ascii.cpp’):

4 char letter;
5 letter = ’a’; // note the single quotation marks
6

7 std::cout << "The character is " << letter << "\n";

Boolean variables (File ’bool.cpp’):

2 bool flag1, flag2;
3 flag1 = true;
4 flag2 = false;



ASCII characters and boolean variables

ASCII characters (File ’ascii.cpp’):

4 char letter;
5 letter = ’a’; // note the single quotation marks
6

7 std::cout << "The character is " << letter << "\n";

Boolean variables (File ’bool.cpp’):

2 bool flag1, flag2;
3 flag1 = true;
4 flag2 = false;



Strings (File ’string.cpp’)

2 # include <string>

5 std::string city; // note the std::
6 city = "Oxford"; // note the double quotation marks
7

8 std::cout << "String length = " << city.length() << "\n";
9 std::cout << "Third character = " << city.at(2) << "\n";

10 std::cout << "Third character = " << city[2] << "\n";
11 // Prints the string in city
12 std::cout << city << "\n";



Strings (File ’string.cpp’)

2 # include <string>

5 std::string city; // note the std::
6 city = "Oxford"; // note the double quotation marks
7

8 std::cout << "String length = " << city.length() << "\n";
9 std::cout << "Third character = " << city.at(2) << "\n";

10 std::cout << "Third character = " << city[2] << "\n";
11 // Prints the string in city
12 std::cout << city << "\n";



Basic console output (File console_output.cpp’)

Output a string and a new line:

1 # include <iostream>

4 std::cout << "Hello World!\n";

8 int x = 1, y = 2;
9 std::cout << "x = " << x << " and y = " << y << "\n";

13 std::cout << "Hello World\n";
14 std::cout.flush();



Basic console output (File console_output.cpp’)

Output a string and a new line:

1 # include <iostream>

4 std::cout << "Hello World!\n";

8 int x = 1, y = 2;
9 std::cout << "x = " << x << " and y = " << y << "\n";

13 std::cout << "Hello World\n";
14 std::cout.flush();



Basic console output (File console_output.cpp’)

Output a string and a new line:

1 # include <iostream>

4 std::cout << "Hello World!\n";

8 int x = 1, y = 2;
9 std::cout << "x = " << x << " and y = " << y << "\n";

13 std::cout << "Hello World\n";
14 std::cout.flush();



Basic keyboard input (File ’keyboard_input.cpp’)

What about input ?

4 int pin;
5 std::cout << "Enter your PIN, then hit RETURN\n";
6 std::cin >> pin;



Basic keyboard input (File ’keyboard_input.cpp’)

What about input ?

4 int pin;
5 std::cout << "Enter your PIN, then hit RETURN\n";
6 std::cin >> pin;



Basic keyboard input (File ’keyboard_input.cpp’)

What about input ?

4 int pin;
5 std::cout << "Enter your PIN, then hit RETURN\n";

6 std::cin >> pin;



Basic keyboard input (File ’keyboard_input.cpp’)

What about input ?

4 int pin;
5 std::cout << "Enter your PIN, then hit RETURN\n";
6 std::cin >> pin;



String input (File ’string_input.cpp’)

Reading strings containing spaces ?

5 std::string name;
6 std::cout << "Enter your name and then hit RETURN\n";
7 std::getline(std::cin, name);
8 std::cout << "Your name is " << name << "\n";



String input (File ’string_input.cpp’)

Reading strings containing spaces ?

5 std::string name;
6 std::cout << "Enter your name and then hit RETURN\n";
7 std::getline(std::cin, name);
8 std::cout << "Your name is " << name << "\n";



The assert statement (File assert.cpp’)

Simplest/First way to handle errors

1 # include <cassert>

7 std::cout << "Enter a non-negative number\n";
8 std::cin >> a;
9 assert(a >= 0.0);

10 std::cout << "The square root of " << a;
11 std::cout << " is " << sqrt(a) << "\n";



The assert statement (File assert.cpp’)

Simplest/First way to handle errors

1

2 #include <cassert>
3

7

8 std::cout << "Enter a non-negative number\n";
9 std::cin >> a;

10 assert(a >= 0.0);
11 std::cout << "The square root of " << a;
12 std::cout << " is " << sqrt(a) << "\n";
13

14


