Page MenuHomec4science

cohesive_extrinsic.cc
No OneTemporary

File Metadata

Created
Mon, May 6, 02:34

cohesive_extrinsic.cc

/**
* @file cohesive_extrinsic.cc
*
* @author Zineb Fouad <zineb.fouad@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Seyedeh Mohadeseh Taheri Mousavi <mohadeseh.taherimousavi@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Tue May 08 2012
* @date last modification: Wed Feb 06 2019
*
* @brief Cohesive element examples in extrinsic
*
*
* @section LICENSE
*
* Copyright (©) 2015-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model_cohesive.hh"
/* -------------------------------------------------------------------------- */
#include <fstream>
#include <iostream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
int main(int argc, char *argv[]) {
initialize("material.dat", argc, argv);
const UInt spatial_dimension = 3;
const UInt max_steps = 10000;
Mesh mesh(spatial_dimension);
auto whoami = Communicator::getStaticCommunicator().whoAmI();
if (whoami == 0) {
mesh.read("cube.msh");
}
mesh.distribute();
SolidMechanicsModelCohesive model(mesh);
/// model initialization
model.initFull(_analysis_method = _static, _is_extrinsic = true);
const auto &position = mesh.getNodes();
auto &velocity = model.getVelocity();
auto &displacement = model.getDisplacement();
auto &blocked_dofs = model.getBlockedDOFs();
auto &force = model.getExternalForce();
/// boundary conditions
model.applyBC(BC::Dirichlet::FixedValue(0.0, _z), "bottom"); // face
model.applyBC(BC::Dirichlet::FixedValue(0.0, _x), "right line"); // line
blocked_dofs(3, _y) = true; // point
Real c = -1e6;
Real s = -2e8;
Matrix<Real> compression{{c, 0., 0.}, {0., c, 0.}, {0., 0., c}};
Matrix<Real> shear{{0., 0., s}, {0., 0., 0.}, {s, 0., 0.}};
force.zero();
model.applyBC(BC::Neumann::FromHigherDim(compression), "top");
model.applyBC(BC::Neumann::FromHigherDim(compression), "bottom");
model.applyBC(BC::Neumann::FromHigherDim(shear), "top");
model.applyBC(BC::Neumann::FromHigherDim(shear), "bottom");
model.applyBC(BC::Neumann::FromHigherDim(shear), "side left");
model.applyBC(BC::Neumann::FromHigherDim(shear), "side right");
model.setBaseName("extrinsic");
model.addDumpFieldVector("displacement");
model.addDumpField("velocity");
model.addDumpField("acceleration");
model.addDumpField("internal_force");
model.addDumpField("external_force");
model.addDumpField("stress");
model.addDumpField("blocked_dofs");
model.addDumpField("grad_u");
model.addDumpFieldToDumper("cohesive elements", "displacement");
model.addDumpFieldToDumper("cohesive elements", "velocity");
model.addDumpFieldToDumper("cohesive elements", "tractions");
auto lower = mesh.getLowerBounds();
auto upper = mesh.getUpperBounds();
model.dump();
model.dump("cohesive elements");
model.solveStep("static");
std::ofstream fout;
fout.open("energies.csv", std::ofstream::out | std::ofstream::trunc);
fout << "step, ed, ep, ek, ew, et" << std::endl;
Real Ed{0}, Ep{0}, Ek{0}, Ew{0};
Ep = model.getEnergy("potential");
Ew += model.getEnergy("external work");
auto Et = Ed + Ep + Ek - Ew;
fout << s << ", " << Ed << ", " << Ep << ", " << Ek << ", " << Ew << ", "
<< Et << std::endl;
model.initNewSolver(_explicit_lumped_mass);
Real time_step = model.getStableTimeStep() * 0.05;
model.setTimeStep(time_step);
if (whoami == 0) {
std::cout << "Time step: " << time_step << std::endl;
}
model.dump();
model.dump("cohesive elements");
s = -1e6;
Matrix<Real> new_shear{{0., 0., s}, {0., 0., 0.}, {s, 0., 0.}};
/// Main loop
for (auto s : arange(1, max_steps)) {
if (s % 100 == 0 and s < 10000) {
model.applyBC(BC::Neumann::FromHigherDim(new_shear), "top");
model.applyBC(BC::Neumann::FromHigherDim(new_shear), "bottom");
model.applyBC(BC::Neumann::FromHigherDim(new_shear), "side left");
model.applyBC(BC::Neumann::FromHigherDim(new_shear), "side right");
}
model.checkCohesiveStress();
model.solveStep("explicit_lumped");
Ed = model.getEnergy("dissipated");
Ep = model.getEnergy("potential");
Ek = model.getEnergy("kinetic");
Ew += model.getEnergy("external work");
Et = Ed + Ep + Ek - Ew;
fout << s << ", " << Ed << ", " << Ep << ", " << Ek << ", " << Ew << ", "
<< Et << std::endl;
if (s % 100 == 0) {
model.dump();
model.dump("cohesive elements");
if (whoami == 0) {
std::cout << "passing step " << s << "/" << max_steps << std::endl;
}
}
}
if (whoami == 0) {
std::cout << "The dissipated energy is " << Ed << std::endl;
}
fout.close();
finalize();
return EXIT_SUCCESS;
}

Event Timeline