Page MenuHomec4science

cohesive_extrinsic.cc
No OneTemporary

File Metadata

Created
Sun, May 5, 16:49

cohesive_extrinsic.cc

/**
* @file cohesive_extrinsic.cc
*
* @author Zineb Fouad <zineb.fouad@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Seyedeh Mohadeseh Taheri Mousavi <mohadeseh.taherimousavi@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Tue May 08 2012
* @date last modification: Wed Feb 06 2019
*
* @brief Cohesive element examples in extrinsic
*
*
* @section LICENSE
*
* Copyright (©) 2015-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model_cohesive.hh"
/* -------------------------------------------------------------------------- */
#include <iostream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
int main(int argc, char * argv[]) {
initialize("material.dat", argc, argv);
const UInt spatial_dimension = 3;
const UInt max_steps = 10000;
Mesh mesh(spatial_dimension);
mesh.read("cube.msh");
SolidMechanicsModelCohesive model(mesh);
/// model initialization
model.initFull(_analysis_method = _explicit_lumped_mass,
_is_extrinsic = true);
Real time_step = model.getStableTimeStep() * 0.05;
model.setTimeStep(time_step);
std::cout << "Time step: " << time_step << std::endl;
auto & inserter = model.getElementInserter();
inserter.setLimit(_y, 0.30, 0.20);
model.updateAutomaticInsertion();
const auto & position = mesh.getNodes();
auto & velocity = model.getVelocity();
/// boundary conditions
model.applyBC(BC::Dirichlet::FixedValue(0.0, _x), "top");
model.applyBC(BC::Dirichlet::FixedValue(0.0, _z), "top");
model.applyBC(BC::Dirichlet::FixedValue(0.0, _x), "bottom");
model.applyBC(BC::Dirichlet::FixedValue(0.0, _z), "bottom");
model.setBaseName("extrinsic");
model.addDumpFieldVector("displacement");
model.addDumpField("velocity");
model.addDumpField("acceleration");
model.addDumpField("internal_force");
model.addDumpField("stress");
model.addDumpField("blocked_dofs");
model.addDumpField("grad_u");
model.addDumpFieldToDumper("cohesive elements", "displacement");
model.addDumpFieldToDumper("cohesive elements", "velocity");
model.addDumpFieldToDumper("cohesive elements", "tractions");
auto lower = mesh.getLowerBounds();
auto upper = mesh.getUpperBounds();
/// initial conditions
Real loading_rate = 0.5;
Real disp_update = loading_rate * time_step;
for (auto && data : zip(make_view(position, spatial_dimension), make_view(velocity, spatial_dimension))) {
auto && position = std::get<0>(data);
auto && velocity = std::get<1>(data);
auto pos = position(_z);// - (upper(_z) - lower(_z)) / 2;
velocity(_x) = loading_rate * pos;
velocity(_z) = loading_rate / 1000 * pos;
}
model.dump();
model.dump("cohesive elements");
/// Main loop
for (auto s : arange(1, max_steps)) {
model.applyBC(BC::Dirichlet::IncrementValue( disp_update, _x), "top");
//model.applyBC(BC::Dirichlet::IncrementValue( disp_update/1000, _z), "top");
model.applyBC(BC::Dirichlet::IncrementValue(-disp_update, _x), "bottom");
//model.applyBC(BC::Dirichlet::IncrementValue(-disp_update/1000, _z), "bottom");
model.checkCohesiveStress();
model.solveStep();
if (s % 100 == 0) {
model.dump();
model.dump("cohesive elements");
std::cout << "passing step " << s << "/" << max_steps << std::endl;
}
}
Real Ed = model.getEnergy("dissipated");
Real Edt = 200 * std::sqrt(2);
std::cout << Ed << " " << Edt << std::endl;
if (Ed < Edt * 0.999 || Ed > Edt * 1.001 || std::isnan(Ed)) {
std::cout << "The dissipated energy is incorrect" << std::endl;
return EXIT_FAILURE;
}
finalize();
return EXIT_SUCCESS;
}

Event Timeline